| 研究生: |
宿彥彬 Yen-Bin Su |
|---|---|
| 論文名稱: |
鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例 Probing the biogeochemical processes of methylmercury formation and accumulation in the paddy system in the vicinity of a coal-fired power plant station |
| 指導教授: | 林居慶 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 汞循環 、環境生地化 、甲基汞生成 、水稻田 、火力發電廠 |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
汞由於其獨特的化性,已被認定為是全球性污染物。目前已知釋放至環境中的汞,主要是人為活動所產生,尤以燃煤發電廠及焚化廠的貢獻量最大。氧化態的無機汞因其大氣停留時間相對短暫,被排放後將因乾濕沉降作用回到地表,並有機會被環境中某些特定的厭氧菌群轉化成為毒性更強的甲基汞,之後再經食物鏈的累積放大效應而對生態與人類造成健康威脅。以往的觀念中,甲基汞所帶來的毒害問題幾乎都是經由對魚類海鮮的攝食所造成;然而,近期的文獻顯示,生長在離汞排放源相近田地上的稻米已被檢測出含高濃度的甲基汞,暗示著除了一般所認知的水域生態系統外,陸域生態系統中的食物也可能成為甲基汞的攝食途徑之一。由於稻米是台灣,也是許多亞洲地區人民的主食,雖然藏於米粒內的汞濃度或許不高,但若以長期攝取的總量觀點來看,其對健康所帶來的影響值得關注。為此,對於水稻田為何易成為甲基汞生成的環境,環境生地化的作用與循環機制如何涉入其過程,以及特定(潛在)排放源對於鄰近地區的水稻田系統的甲基汞累積效應為何,有待進一步的研究與探討。
本研究以台中火力發電廠周圍的水稻田為研究場址,對其表水、表土、根際土與其孔隙水、以及場址內收成之稻米進行總汞、甲基汞及可能影響汞甲基化反應之地化參數進行分析,盼藉此明瞭汞於現地場址的生物有效性程度,並同時將現地根際土壤當做植種源進行縮模試驗,搭配汞甲基化基因作為生物標記,進一步分析現地根際圈內可能的主要汞甲基化菌群。除此之外,也藉由水耕植栽試驗,在調控稻作培養液內不同甲基汞的配位化學條件下,初步探究孔隙水的化學組成對於稻作吸收與累積甲基汞的效應為何。調查結果指出,由現地不論是根際土、根際土壤之孔隙水、表面土以及稻米的總汞與甲基汞濃度來看,相較於過去文獻與法規值,本研究所挑選鄰近台中火電廠的兩水稻田場址均屬於未受汞污染之地區,推測一直以來台中火力發電廠對於廠內所設置的與汞排放相關之空氣污染防治措施應相當完善,使得排出的廢氣並未對鄰近的水稻田農地造成汞污染與累積。而根據地化參數分析、縮模試驗及分生試驗的結果得知,水稻田在覆有表面灌溉水的生長期間,根際土內具有最高的微生物活性以及汞的生物可利用性,且硫酸鹽還原菌群可能為現地主導汞甲基化的主要菌群。總結上述調查結果,暗示著覆水的水稻田為具有高汞甲基化潛勢的場址,因此一旦場址在水稻生長期間受到外來汞污染,其根際土環境很有可能會將無機汞進一步轉化成甲基汞,進而造成場址內甲基汞的生成及後續稻米內的累積問題。最後,水耕植栽試驗的結果指出不同型態的甲基汞確實會對稻作的吸收造成影響,且由結果初步推測稻作吸收甲基汞的背後可能同時隱含著被動擴散與主動運輸等機制,但實際為何仍有待後續的研究進一步確認。
Mercury is a highly toxic trace element that has been recognized internationally as a global priority pollutant. Current inventories of mercury emissions indicate that anthropogenic activities are the major sources of mercury inputs to the environment, with coal combustion and solid waste incineration accounting for more than half of the total emissions. Once released, inorganic oxidized forms of mercury with relatively short atmospheric residence time would be deposited locally, then be converted by specific groups of anaerobic bacteria to methylmercury, a potent neurotoxin that can readily accumulate and magnify in biota, particularly in the aquatic food web. However, in terrestrial food chains, because lowland rice paddies display ecological functions similarly to wetlands that have been known as important sites for methylmercury formation, the paddy system can be potentially considered “hotspots” of mercury methylation. Indeed, recent studies have reported that aside from consumption of fish and seafood, high levels of methylmercury are detected in rice grown in the vicinity of anthropogenic mercury emission sources, suggesting that ingestion of rice may be another important human exposure route to methylmercury. Given that rice is a staple food in Taiwan and throughout Asia and the potential for maternal methylemrcury exposure (even at low-level) through ingestion of rice that may subsequently impact health of the offspring, it is important to conduct thorough investigation of this exposure pathway by examining why rice paddies are conductive for Hg methylation, which biogeochemical reactions may have been involved in this process, and also how additional inputs resulted from anthropogenic perturbations may eventually lead to the potential accumulation of Hg and MeHg in rice plants.
In this study, surface water, surface soil and rhizospheric soil and porewater in two rice fields near the Taichung Coal-Fired Power Plant Station were sampled. Analyses included total mercury, methylmercury and the geochemical parameters which may influence the mercury methylation cycle. In addition, microcosm, gene-probing and hydroponic experiments were carried out to investigate the primary microbes and processes that might have controlled the production of methylmercury in our study sites. Our results suggest that levels of total Hg and MeHg in paddy soil and rice grains did not exceed the current control standards set for farm land and edible rice, suggesting that the study sites are not contaminated with Hg and the air control devices employed in the coal-fired power plant may have been efficient for the control of Hg emission. However, it is observed that both bioavailability of inorganic Hg and the activity of Hg-methylating microbes were increased during the early and mid rice growing season. Results of soil incubation experiments and molecular probing revealed that sulfate-reducing bacteria may be the principal Hg-methylators in the rhizospheric zones of the study sites, suggesting that the paddy ecosystem has a great potential for enhanced Hg-methylation if elevated inputs of Hg occurred. Finally, results of hydroponic experiments implied that both passive diffusion and active transport may take place in the root uptake of MeHg in rice plants.
1. Aiken, G. R., C. C. Gilmour, D. P. Krabbenhoft, and W. Orem, “Dissolved organic matter in the Florida Everglades: implications for ecosystem restoration”, Critical Reviews in Environmental Science and Technology, vol. 41, pp. 217-248,(2011).
2. Bakir, F., S. Damluji, L. Amin-Zaki, M. Murtadha, A. Khalidi, N. Al-Rawi, S. Tikriti, H. Dhahir, T. Clarkson, and J. Smith, “Methylmercury poisoning in Iraq”, Science, vol. 181, pp. 230-241,(1973).
3. Barkay, T., M. Gillman, and R. R. Turner, “Effects of dissolved organic carbon and salinity on bioavailability of mercury”, Appl Environ Microbiol, vol. 63, pp. 4267-4271,(1997).
4. Barringer, J. L., and C. L. MacLeod, “Relation of mercury to other chemical constituents in ground water in the Kirkwood-Cohansey aquifer system, New Jersey Coastal Plain, and mechanisms for mobilization of mercury from sediments to ground water”, US Department of the Interior, US Geological Survey (2001).
5. Barringer, J. L., and Z. Szabo, “Overview of investigations into mercury in ground water, soils, and septage, new jersey coastal plain”, Water, Air, and Soil Pollution, vol. 175, pp. 193-221,(2006).
6. Benoit, J., C. Gilmour, A. Heyes, R. Mason, and C. Miller, 2003, Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems, ACS symposium series, p. 262-297.
7. Benoit, J. M., C. C. Gilmour, and R. P. Mason, “The Influence of Sulfide on Solid-Phase Mercury Bioavailability for Methylation by Pure Cultures ofDesulfobulbus propionicus(1pr3)”, Environ Sci Technol, vol. 35, pp. 127-132,(2001).
8. Benoit, J. M., C. C. Gilmour, R. P. Mason, and A. Heyes, “Sulfide Controls on Mercury Speciation and Bioavailability to Methylating Bacteria in Sediment Pore Waters”, Environ Sci Technol, vol. 33, pp. 951-957,(1999a).
9. Benoit, J. M., R. P. Mason, and C. C. Gilmour, “Estimation of mercury-sulfide speciation in sediment pore waters using octanol-water partitioning and implications for availability to methylating bacteria”, Environmental Toxicology and Chemistry, vol. 18, pp. 2138-2141,(1999b).
10. Bloom, N. S., “On the Chemical Form of Mercury in Edible Fish and Marine Invertebrate Tissue”, Canadian Journal of Fisheries and Aquatic Sciences, vol. 49, pp. 1010-1017,(1992).
11. Branfireun, B. A., N. T. Roulet, C. A. Kelly, and J. W. M. Rudd, “In situ sulphate stimulation of mercury methylation in a boreal peatland: Toward a link between acid rain and methylmercury contamination in remote environments”, Global Biogeochemical Cycles, vol. 13, pp. 743-750,(1999).
12. Carpi, A., “Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere”, Water, Air, and Soil Pollution, vol. 98, pp. 241-254,(1997).
13. Chabbi, A., K. L. McKee, and I. A. Mendelssohn, “Fate of oxygen losses from Typha domingensis (Typhaceae) and Cladium jamaicense (Cyperaceae) and consequences for root metabolism”, American Journal of Botany, vol. 87, pp. 1081-1090,(2000).
14. Charlet, L., D. Bosbach, and T. Peretyashko, “Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): an AFM study”, Chemical Geology, vol. 190, pp. 303-319,(2002).
15. Clarkson, T. W., “Mercury: major issues in environmental health”, Environmental Health Perspectives, vol. 100, p. 31,(1993).
16. Cock, J., S. Yoshida, and D. A. Forno, “Laboratory manual for physiological studies of rice”, Int. Rice Res. Inst. (1976).
17. Compeau, G., and R. Bartha, “Methylation and demethylation of mercury under controlled redox, pH and salinity conditions”, Appl Environ Microbiol, vol. 48, pp. 1203-1207,(1984).
18. Compeau, G. C., and R. Bartha, “Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment”, Appl Environ Microbiol, vol. 50, pp. 498-502,(1985).
19. Compeau, G. C., and R. Bartha, “Effect of salinity on mercury-methylating activity of sulfate-reducing bacteria in estuarine sediments”, Appl Environ Microbiol, vol. 53, pp. 261-265,(1987).
20. Cutter, G. A., and C. F. Krahforst, “Sulfide in surface waters of the western Atlantic Ocean”, Geophysical Research Letters, vol. 15, pp. 1393-1396,(1988).
21. Feng, X., P. Li, G. Qiu, S. Wang, G. Li, L. Shang, B. Meng, H. Jiang, W. Bai, Z. Li, and X. Fu, “Human Exposure To Methylmercury through Rice Intake in Mercury Mining Areas, Guizhou Province, China”, Environ Sci Technol, vol. 42, pp. 326-332,(2008).
22. Fitzgerald, W. F., and R. P. Mason, “Biogeochemical cycling of mercury in the marine environment”, Metal Ions in Biological Systems, Vol 34, vol. 34, pp. 53-111,(1997).
23. Fleming, E. J., E. E. Mack, P. G. Green, and D. C. Nelson, “Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium”, Appl Environ Microbiol, vol. 72, pp. 457-464,(2006).
24. Gilmour, C., D. Krabbenhoft, W. Orem, G. Aiken, and E. Roden, “Appendix 3B-2: status report on ACME studies on the control of mercury methylation and bioaccumulation in the Everglades”, 2007 South Florida Environmental Report, vol. 1, pp. 3B-2,(2007).
25. Gilmour, C. C., D. A. Elias, A. M. Kucken, S. D. Brown, A. V. Palumbo, C. W. Schadt, and J. D. Wall, “Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation”, Appl Environ Microbiol, vol. 77, pp. 3938-3951,(2011).
26. Gilmour, C. C., and E. A. Henry, “Mercury methylation in aquatic systems affected by acid deposition”, Environ Pollut, vol. 71, pp. 131-169,(1991).
27. Gilmour, C. C., M. Podar, A. L. Bullock, A. M. Graham, S. D. Brown, A. C. Somenahally, A. Johs, R. A. Hurt, Jr., K. L. Bailey, and D. A. Elias, “Mercury methylation by novel microorganisms from new environments”, Environ Sci Technol, vol. 47, pp. 11810-11820,(2013).
28. Gnamuš, A., A. R. Byrne, and M. Horvat, “Mercury in the Soil-Plant-Deer-Predator Food Chain of a Temperate Forest in Slovenia”, Environ Sci Technol, vol. 34, pp. 3337-3345,(2000).
29. Haitzer, M., G. R. Aiken, and J. N. Ryan, “Binding of Mercury(II) to Aquatic Humic Substances: Influence of pH and Source of Humic Substances”, Environ Sci Technol, vol. 37, pp. 2436-2441,(2003).
30. Hamelin, S., M. Amyot, T. Barkay, Y. Wang, and D. Planas, “Methanogens: principal methylators of mercury in lake periphyton”, Environ Sci Technol, vol. 45, pp. 7693-7700,(2011).
31. Harris, R. C., J. W. Rudd, M. Amyot, C. L. Babiarz, K. G. Beaty, P. J. Blanchfield, R. A. Bodaly, B. A. Branfireun, C. C. Gilmour, J. A. Graydon, A. Heyes, H. Hintelmann, J. P. Hurley, C. A. Kelly, D. P. Krabbenhoft, S. E. Lindberg, R. P. Mason, M. J. Paterson, C. L. Podemski, A. Robinson, K. A. Sandilands, G. R. Southworth, V. L. St Louis, and M. T. Tate, “Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition”, Proc Natl Acad Sci U S A, vol. 104, pp. 16586-16591,(2007).
32. Horvat, M., N. Nolde, V. Fajon, V. Jereb, M. Logar, S. Lojen, R. Jacimovic, I. Falnoga, Q. Liya, J. Faganeli, and D. Drobne, “Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China”, Science of The Total Environment, vol. 304, pp. 231-256,(2003).
33. Hurley, J. P., J. M. Benoit, C. L. Babiarz, M. M. Shafer, A. W. Andren, J. R. Sullivan, R. Hammond, and D. A. Webb, “Influences of watershed characteristics on mercury levels in wisconsin rivers”, Environ Sci Technol, vol. 29, pp. 1867-1875,(1995).
34. Jensen, S., and A. JernelÖV, “Biological Methylation of Mercury in Aquatic Organisms”, Nature, vol. 223, pp. 753-754,(1969).
35. Kerin, E. J., C. C. Gilmour, E. Roden, M. T. Suzuki, J. D. Coates, and R. P. Mason, “Mercury methylation by dissimilatory iron-reducing bacteria”, Appl Environ Microbiol, vol. 72, pp. 7919-7921,(2006).
36. King, J. K., J. E. Kostka, M. E. Frischer, F. M. Saunders, and R. A. Jahnke, “A Quantitative Relationship that Demonstrates Mercury Methylation Rates in Marine Sediments Are Based on the Community Composition and Activity of Sulfate-Reducing Bacteria”, Environ Sci Technol, vol. 35, pp. 2491-2496,(2001).
37. Kirby, A., I. Rucevska, C. C. YemelinV, and O. Simonett, “Mercury–Time to Act”, United Nations Environment Program, vol. 23,(2013).
38. Kirk, G., “The biogeochemistry of submerged soils”, John Wiley & Sons (2004).
39. Krabbenhoft, D. P., and E. M. Sunderland, “Global change and mercury”, Science, vol. 341, pp. 1457-1458,(2013).
40. Landis, M. S., J. V. Ryan, A. F. Ter Schure, and D. Laudal, “Behavior of Mercury Emissions from a Commercial Coal-Fired Power Plant: The Relationship between Stack Speciation and Near-Field Plume Measurements”, Environ Sci Technol,(2014).
41. Lasorsa, B., and A. Casas, “A comparison of sample handling and analytical methods for determination of acid volatile sulfides in sediment”, Marine Chemistry, vol. 52, pp. 211-220,(1996).
42. Lemes, M., and F. Wang, “Methylmercury speciation in fish muscle by HPLC-ICP-MS following enzymatic hydrolysis”, Journal of Analytical Atomic Spectrometry, vol. 24, p. 663,(2009).
43. Li, L., F. Wang, B. Meng, M. Lemes, X. Feng, and G. Jiang, “Speciation of methylmercury in rice grown from a mercury mining area”, Environ Pollut, vol. 158, pp. 3103-3107,(2010).
44. Lin, C. C., N. Yee, and T. Barkay, “Microbial transformations in the mercury cycle”, Environmental chemistry and toxicology of mercury, pp. 155-191,(2012).
45. Liu, Y. R., R. Q. Yu, Y. M. Zheng, and J. Z. He, “Analysis of the microbial community structure by monitoring an Hg methylation gene (hgcA) in paddy soils along an Hg gradient”, Appl Environ Microbiol, vol. 80, pp. 2874-2879,(2014).
46. Lovley, D. R., J. F. Stolz, G. L. Nord, and E. J. Phillips, “Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism”, Nature, vol. 330, pp. 252-254,(1987).
47. Madigan, M. T., J. M. Martinko, P. V. Dunlap, and D. P. Clark, “Brock Biology of microorganisms 12th edn”, International Microbiology, vol. 11, pp. 65-73,(2008).
48. Mason, R. P., J. R. Reinfelder, and F. M. M. Morel, “Bioaccumulation of Mercury and Methylmercury”, pp. 915-921,(1995).
49. Mehrotra, A. S., and D. L. Sedlak, “Decrease in Net Mercury Methylation Rates Following Iron Amendment to Anoxic Wetland Sediment Slurries”, Environ Sci Technol, vol. 39, pp. 2564-2570,(2005).
50. Meng, B., X. Feng, G. Qiu, C. W. Anderson, J. Wang, and L. Zhao, “Localization and speciation of mercury in brown rice with implications for pan-Asian public health”, Environ Sci Technol, vol. 48, pp. 7974-7981,(2014).
51. Meng, B., X. Feng, G. Qiu, P. Liang, P. Li, C. Chen, and L. Shang, “The process of methylmercury accumulation in rice (Oryza sativa L.)”, Environ Sci Technol, vol. 45, pp. 2711-2717,(2011).
52. Miskimmin, B. M., “Effect of natural levels of Dissolved Organic Carbon (DOC) on methyl mercury formation and sediment-water partitioning”, Bulletin of Environmental Contamination and Toxicology, vol. 47, pp. 743-750,(1991).
53. Miskimmin, B. M., J. W. Rudd, and C. A. Kelly, “Influence of dissolved organic carbon, pH, and microbial respiration rates on mercury methylation and demethylation in lake water”, Canadian Journal of Fisheries and Aquatic Sciences, vol. 49, pp. 17-22,(1992).
54. Munthe, J., R. A. Bodaly, B. A. Branfireun, C. T. Driscoll, C. C. Gilmour, R. Harris, M. Horvat, M. Lucotte, and O. Malm, “Recovery of Mercury-Contaminated Fisheries”, AMBIO: A Journal of the Human Environment, vol. 36, pp. 33-44,(2007).
55. Ndu, U., R. P. Mason, H. Zhang, S. Lin, and P. T. Visscher, “Effect of inorganic and organic ligands on the bioavailability of methylmercury as determined by using a mer-lux bioreporter”, Appl Environ Microbiol, vol. 78, pp. 7276-7282,(2012).
56. Orem, W., C. Gilmour, D. Axelrad, D. Krabbenhoft, D. Scheidt, P. Kalla, P. McCormick, M. Gabriel, and G. Aiken, “Sulfur in the South Florida ecosystem: Distribution, sources, biogeochemistry, impacts, and management for restoration”, Critical Reviews in Environmental Science and Technology, vol. 41, pp. 249-288,(2011).
57. Oremland, R. S., and B. F. Taylor, “Sulfate reduction and methanogenesis in marine sediments”, Geochimica Et Cosmochimica Acta, vol. 42, pp. 209-214,(1978).
58. Organization, W. H., “IPCS environmental health criteria 101: methylmercury. International programme of chemical safety”, World Health Organization, Geneva, Switzerland,(1990).
59. Parks, J. M., A. Johs, M. Podar, R. Bridou, R. A. Hurt, Jr., S. D. Smith, S. J. Tomanicek, Y. Qian, S. D. Brown, C. C. Brandt, A. V. Palumbo, J. C. Smith, J. D. Wall, D. A. Elias, and L. Liang, “The genetic basis for bacterial mercury methylation”, Science, vol. 339, pp. 1332-1335,(2013).
60. Qiu, G., X. Feng, P. Li, S. Wang, G. Li, L. Shang, and X. Fu, “Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China”, J Agric Food Chem, vol. 56, pp. 2465-2468,(2008).
61. Rothenberg, S. E., R. F. Ambrose, and J. A. Jay, “Mercury cycling in surface water, pore water and sediments of Mugu Lagoon, CA, USA”, Environ Pollut, vol. 154, pp. 32-45,(2008).
62. Rothenberg, S. E., and X. Feng, “Mercury cycling in a flooded rice paddy”, Journal of Geophysical Research, vol. 117,(2012).
63. Rothenberg, S. E., X. Feng, B. Dong, L. Shang, R. Yin, and X. Yuan, “Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies”, Environ Pollut, vol. 159, pp. 1283-1289,(2011).
64. Rothenberg, S. E., L. Windham-Myers, and J. E. Creswell, “Rice methylmercury exposure and mitigation: a comprehensive review”, Environmental Research, vol. 133, pp. 407-423,(2014).
65. Schaefer, J. K., R. M. Kronberg, F. M. M. Morel, and U. Skyllberg, “Detection of a key Hg methylation gene,hgcA, in wetland soils”, Environmental Microbiology Reports, pp. n/a-n/a,(2014a).
66. Schaefer, J. K., and F. M. M. Morel, “High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens”, Nature Geoscience, vol. 2, pp. 123-126,(2009).
67. Schaefer, J. K., S. S. Rocks, W. Zheng, L. Liang, B. Gu, and F. M. Morel, “Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria”, Proc Natl Acad Sci U S A, vol. 108, pp. 8714-8719,(2011).
68. Schaefer, J. K., A. Szczuka, and F. M. Morel, “Effect of divalent metals on Hg(II) uptake and methylation by bacteria”, Environ Sci Technol, vol. 48, pp. 3007-3013,(2014b).
69. Scheidt, D., and P. Kalla, “Everglades ecosystem assessment: water management and quality, eutrophication, mercury contamination, soils and habitat: monitoring for adaptive management: a RE-MAP status report. USEPA Region 4, Athens, GA”, USEPA Region, vol. 4, p. 98,(2007).
70. Senevirathna, W. U., H. Zhang, and B. Gu, “Effect of carboxylic and thiol ligands (oxalate, cysteine) on the kinetics of desorption of Hg (II) from kaolinite”, Water, Air, & Soil Pollution, vol. 215, pp. 573-584,(2011).
71. Simmons-Willis, T. A., A. S. Koh, T. W. Clarkson, and N. Ballatori, “Transport of a neurotoxicant by molecular mimicry: the methylmercury-L-cysteine complex is a substrate for human L-type large neutral amino acid transporter (LAT) 1 and LAT2”, Biochem J, vol. 367, pp. 239-246,(2002).
72. Slowey, A. J., and G. E. Brown, “Transformations of mercury, iron, and sulfur during the reductive dissolution of iron oxyhydroxide by sulfide”, Geochimica Et Cosmochimica Acta, vol. 71, pp. 877-894,(2007).
73. Spry, D. J., and J. G. Wiener, “Metal bioavailability and toxicity to fish in low-alkalinity lakes: A critical review”, Environ Pollut, vol. 71, pp. 243-304,(1991).
74. St. Louis, V. L., J. W. Rudd, C. A. Kelly, K. G. Beaty, N. S. Bloom, and R. J. Flett, “Importance of wetlands as sources of methyl mercury to boreal forest ecosystems”, Canadian Journal of Fisheries and Aquatic Sciences, vol. 51, pp. 1065-1076,(1994).
75. Stein, E. D., Y. Cohen, and A. M. Winer, “Environmental distribution and transformation of mercury compounds”, Critical Reviews in Environmental Science and Technology, vol. 26, pp. 1-43,(1996).
76. Ullrich, S. M., T. W. Tanton, and S. A. Abdrashitova, “Mercury in the aquatic environment: a review of factors affecting methylation”, Critical Reviews in Environmental Science and Technology, vol. 31, pp. 241-293,(2001).
77. Wang, X., Z. Ye, B. Li, L. Huang, M. Meng, J. Shi, and G. Jiang, “Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg”, Environ Sci Technol, vol. 48, pp. 1878-1885,(2014).
78. Weber, K. A., L. A. Achenbach, and J. D. Coates, “Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction”, Nature Reviews Microbiology, vol. 4, pp. 752-764,(2006).
79. Wiatrowski, H. A., S. Das, R. Kukkadapu, E. S. Ilton, T. Barkay, and N. Yee, “Reduction of Hg(II) to Hg(0) by Magnetite”, Environ Sci Technol, vol. 43, pp. 5307-5313,(2009).
80. Wiener, J. G., B. C. Knights, M. B. Sandheinrich, J. D. Jeremiason, M. E. Brigham, D. R. Engstrom, L. G. Woodruff, W. F. Cannon, and S. J. Balogh, “Mercury in Soils, Lakes, and Fish in Voyageurs National Park (Minnesota): Importance of Atmospheric Deposition and Ecosystem Factors”, Environ Sci Technol, vol. 40, pp. 6261-6268,(2006).
81. Windham-Myers, L., M. Marvin-Dipasquale, D. P. Krabbenhoft, J. L. Agee, M. H. Cox, P. Heredia-Middleton, C. Coates, and E. Kakouros, “Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment”, Journal of Geophysical Research, vol. 114,(2009).
82. Yu, R. Q., I. Adatto, M. R. Montesdeoca, C. T. Driscoll, M. E. Hines, and T. Barkay, “Mercury methylation in Sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland”, FEMS Microbiol Ecol, vol. 74, pp. 655-668,(2010).
83. Yu, R. Q., J. R. Flanders, E. E. Mack, R. Turner, M. B. Mirza, and T. Barkay, “Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments”, Environ Sci Technol, vol. 46, pp. 2684-2691,(2012).
84. Yu, R. Q., J. R. Reinfelder, M. E. Hines, and T. Barkay, “Mercury methylation by the methanogen Methanospirillum hungatei”, Appl Environ Microbiol, vol. 79, pp. 6325-6330,(2013).
85. Zhang, H., X. Feng, T. Larssen, L. Shang, and P. Li, “Bioaccumulation of methylmercury versus inorganic mercury in rice (Oryza sativa L.) grain”, Environ Sci Technol, vol. 44, pp. 4499-4504,(2010).