| 研究生: |
楊婉歆 Wan-Hsin Yang |
|---|---|
| 論文名稱: |
以測高衛星與重力衛星觀測南海水量的年際變化 Water budget variation of the South China Sea in relation to ENSO as determined from space altimetric and gravimetric observations |
| 指導教授: |
趙丰
Benjamin Fong Chao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球科學學系 Department of Earth Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 測高衛星 、GRACE重力衛星 、南中國海 、黑潮 、ENSO |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
南中國海(South China Sea, SCS)為四周環繞陸地與島嶼的半封閉海域,其海平面高度變化對於周圍環境影響甚大,且此處位於低緯度地區,應考慮聖嬰現象 (El Niño–Southern Oscillation, ENSO)的影響。因此本研究分析1993年至2014年測高衛星所測量的海平面高度變化及2003年至2014年GRACE(Gravity Recovery and Climate Experiment)重力資料變化,同時將南中國海與其他海域連通的海峽納入考量,分析1993年至2014年海峽地轉流流速變化情形。透過經驗正交方程(Empirical Orthogonal Function, EOF)分析,結果發現南中國海海平面高度移除季節性訊號後,其Mode-1和多變量聖嬰指數(Multivariate ENSO Index, MEI)相關係數達到0.3;於GRACE重力資料變化能夠得知進水量的變化,移除季節性訊號後EOF分析Mode-1和MEI的相關性有0.26:顯示反聖嬰年時海平面高度明顯上升,於聖嬰年反之。海峽地轉流流速變化,以呂宋海峽為例,與MEI也有0.28的高相關性,於聖嬰年時進入南中國海的流速增強,代表海峽進出量有調節南中國海水量的功能,並非影響整體南海水量的主要因素。綜合測高資料及GRACE重力資料分析結果,南中國海水量於聖嬰年時水量較少,反聖嬰年時水量較多。
The South China Sea (SCS) is a semi-enclosed marginal sea surrounded by continents and islands, thus, water can only exchange through the straits. In this study, we analyze the water budget variations of SCS during 1993-2014, using (i) the AVISO-released surface geostrophic current (SGC) daily data computed by combining the satellite altimeter data in reference to the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) geoid; (ii) the Gravity Recovery and Climate Experiment (GRACE) monthly time-variable gravity signifying the water mass variation; and (iii) daily sea level variation (SLV) from AVISO satellite altimeter data. We find from (i) that SGC water intrusion into SCS through the Luzon Strait, normally stronger in winter and weaker in summer, is correlated at the coefficient of 0.28 with the Multivariate El Niño Southern Oscillation (ENSO) Index (MEI) apparently under the influence of the variation of monsoon and the strength of Kuroshio in response to the ENSO. As the water mass budget will also be reflected in the gravity and SLV, we use the GRACE data (ii) to find the water mass redistributions and the satellite altimeter data (iii) for the SLV in SCS, both showing similar annual variation patterns. We also conduct the Empirical Orthogonal Function (EOF) analysis on the non-seasonal datasets. We find both leading modes showing unison water rise-and-fall behavior in the whole SCS. Their time series have correlation coefficients up to 0.44 and 0.30, respectively, with the MI. This means SCS water budget is under ENSO influence, not only in the intrusion but also reflected in the mass and sea level height. The SCS water budget variation is larger in normal winters and smaller during El Niño years.
[ 1 ] Qu, T., Kim, Y. Y., Yaremchuk, M., Tozuka, T., Ishida, A., & Yamagata, T. (2004). Can Luzon Strait transport play a role in conveying the impact of ENSO to the South China Sea?*. Journal of Climate, 17(18), 3644-3657.
[ 2 ] Ho, C. R., Zheng, Q., Soong, Y. S., Kuo, N. J., & Hu, J. H. (2000). Seasonal variability of sea surface height in the South China Sea observed with TOPEX/Poseidon altimeter data. Journal of Geophysical Research: Oceans,105(C6), 13981-13990.
[ 3 ] Nan, F., Xue, H., & Yu, F. (2015). Kuroshio intrusion into the South China Sea: A review. Progress in Oceanography, 137, 314-333.
[ 4 ] Liang, W. D., Yang, Y. J., Tang, T. Y., & Chuang, W. S. (2008). Kuroshio in the Luzon Strait. Journal of Geophysical Research: Oceans, 113(C8).
[ 5 ] Chen, C. T. A., Yeh, Y. T., Chen, Y. C., & Huang, T. H. (2015). Seasonal and ENSO-related interannual variability of subsurface fronts separating West Philippine Sea waters from South China Sea waters near the Luzon Strait.Deep Sea Research Part I: Oceanographic Research Papers, 103, 13-23.
[ 6 ] Høyer, J. L., Quadfasel, D., & Andersen, O. B. (2002). Deep ocean currents detected with satellite altimetry. Canadian journal of remote sensing, 28(4), 556-566.
[ 7 ] Hwang, C., & Kao, R. (2002). TOPEX/POSEIDON-derived space–time variations of the Kuroshio Current: applications of a gravimetric geoid and wavelet analysis. Geophysical Journal International, 151(3), 835-847.
[ 8 ] Feng, W., & Zhong, M. (2015). Global sea level variations from altimetry, GRACE and Argo data over 2005–2014. Geodesy and Geodynamics, 6(4), 274-279.
[ 9 ] Guo, J., Hu, Z., Wang, J., Chang, X., & Li, G. (2015). Sea level changes of China seas and neighboring ocean based on satellite altimetry missions from 1993 to 2012. Journal of Coastal Research, 73(sp1), 17-21.
[ 10 ] Feng, W., Zhong, M., & Xu, H. (2012). Sea level variations in the South China Sea inferred from satellite gravity, altimetry, and oceanographic data. Science China Earth Sciences, 55(10), 1696-1701.
[ 11 ] Guo, J., Fang, W., Fang, G., & Chen, H. (2006). Variability of surface circulation in the South China Sea from satellite altimeter data. Chinese Science Bulletin, 51(2), 1-8.
[ 12 ] Zhuang, W., Xie, S. P., Wang, D., Taguchi, B., Aiki, H., & Sasaki, H. (2010). Intraseasonal variability in sea surface height over the South China Sea.Journal of Geophysical Research: Oceans, 115(C4).
[ 13 ] Rong, Z., Liu, Y., Zong, H., & Cheng, Y. (2007). Interannual sea level variability in the South China Sea and its response to ENSO. Global and Planetary Change, 55(4), 257-272.
[ 14 ] Soumya, M., Vethamony, P., & Tkalich, P. (2015). Inter-annual sea level variability in the southern South China Sea. Global and Planetary Change, 133, 17-26.
[ 15 ] Wu, C. R., & Hsin, Y. C. (2012). The forcing mechanism leading to the Kuroshio intrusion into the South China Sea. Journal of Geophysical Research: Oceans, 117(C7).
[ 16 ] Chang, C. W., Hsu, H. H., Wu, C. R., & Sheu, W. J. (2008). Interannual mode of sea level in the South China Sea and the roles of El Niño and El Niño Modoki. Geophysical Research Letters, 35(3).
[ 17 ] De Linage, C., Rivera, L., Hinderer, J., Boy, J. P., Rogister, Y., Lambotte, S., & Biancale, R. (2009). Separation of coseismic and postseismic gravity changes for the 2004 Sumatra–Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation. Geophysical Journal International, 176(3), 695-714.
[ 18 ] YaoXiang, H. (1988). Temperature and salinity distributions in the South China Sea and adjacent waters. Progress in Oceanography, 21(3), 493-501.
[ 19 ] Yu, Z., McCreary Jr, J. P., Yaremchuk, M., & Furue, R. (2008). Subsurface Salinity Balance in the South China Sea*. Journal of Physical Oceanography,38(2), 527-539.
[ 20 ] Qu, T., Mitsudera, H., & Yamagata, T. (2000). Intrusion of the North Pacific waters into the South China Sea. Journal of Geophysical Research: Oceans,105(C3), 6415-6424.
[ 21 ] Shaw, P. T. (1991). The seasonal variation of the intrusion of the Philippine Sea water into the South China Sea. Journal of Geophysical Research: Oceans,96(C1), 821-827.
[ 22 ] Pickering, A., Alford, M., Nash, J., Rainville, L., Buijsman, M., Ko, D. S., & Lim, B. (2015). Structure and Variability of Internal Tides in Luzon Strait*.Journal of Physical Oceanography, 45(6), 1574-1594.
[ 23 ] Alford, M. H., Peacock, T., MacKinnon, J. A., Nash, J. D., Buijsman, M. C., Centuroni, L. R., ... & Fu, K. H. (2015). The formation and fate of internal waves in the South China Sea. Nature, 521(7550), 65-69.
[ 24 ] Wang, A., Du, Y., Zhuang, W., & Qi, Y. (2015). Correlation between subsurface high-salinity water in the northern South China Sea and the North Equatorial Current–Kuroshio circulation system from HYCOM simulations. Ocean Science, 11(2), 305-312.
[ 25 ] Rojana-anawat, P., Sukramongkol, N., & Pradit, S. (2000). Characteristics of Water in the South China Sea, Area III: Western Philippines. In Proceedings of the Third Technical Seminar on Marine Fishery Resources Survey in the South China Sea, Area III: Western Philippines. Special Paper No. SEC/SP/41. Southeast Asian Fisheries Development Center, Bangkok (pp. 291-307).
[ 26 ] Wu, C.-R. , P. –T. Shaw and S. –Y Chao (1999) : Assimilating altimetric data into a South China Sea model, J. Geophys. Res. , 104, 29987-30005.
[ 27 ] Li, X., & Götze, H. J. (2001). Ellipsoid, geoid, gravity, geodesy, and geophysics. Geophysics, 66(6), 1660-1668.
[ 28 ] Krishnamurthy, V., & Kirtman, B. P. (2003). Variability of the Indian Ocean: Relation to monsoon and ENSO. Quarterly Journal of the Royal Meteorological Society, 129(590), 1623-1646.