| 研究生: |
劉冠明 Kuan-ming Liu |
|---|---|
| 論文名稱: |
應用於紅外線光偵測器之鍺量子點堆疊結構設計與研製 Design and Fabrication of Germanium Quantum Dots Configurations for Near Infrared Photodetection |
| 指導教授: |
李佩雯
Pei-wen Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 鍺量子點 、光偵測器 、PIN |
| 外文關鍵詞: | Germanium Quantum Dots, Photo detector, PIN |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文使用選擇性熱氧化複晶矽鍺柱形成高品質之單晶鍺量子點,並將鍺量子點作為有效的光吸收層,成功製備出不同本質層厚度的P-I (鍺量子點) -N近紅外線光偵測器。藉由不同大小之鍺量子點陣列整合於複晶矽/鍺量子點/單晶矽異質接面之 P-I-N光偵測器二極體架構中,我們在近紅外光的波段下可觀察到光響應。在850 nm、980 nm、 1310 nm 及 1570 nm之雷射光源於2.5 mW的照射下,元件得到的光電流與暗電流比值最高為28、15、2.3以及1.6倍。在近紅外光線照射下,鍺量子點/矽界面所侷限之正電荷造成內建電場的產生,使得元件在操作速度上最快可達到440 MHz之操作頻率。
本文另一主題是以UHV-CVD沉積約1 μm厚堆疊式偶合矽/鍺量子點堆疊結構,來製備近紅外線光偵測器。評估在單一偶合量子點中,增加矽/鍺量子點接面數目的設計,對於光響應之影響。於850 nm、980 nm、1310 nm 及1570 nm 的雷射光源於照射下,其元件所展現之光電流與暗電流比值最高為4000 (0.45 mW)、2200 (0.45 mW)、52 (9.4 mW) 與 4.2 (5.4 mW) 倍。隨著單位元下矽/鍺量子點異質接面的數目增加,可清楚地觀察到元件之開路電壓會隨接面數目增加而變大,因此證明了矽/鍺接面數目越多,內建電場也隨之增強,有利於光響應的增進。
This thesis produced high-quality and single-crystal Ge quantum dots (QDs) using selectively oxidation of SiGe pillars, and demonstrated Ge-QD P-I-N near-infrared photodetectors with various sizes of Ge QD. The P-I-N photodetectors exhibit various near-infrared photoresponsivities by tuning different sizes of Ge-QD arrays integrated in the photodetectors. Under 2.5 mW illumination at 850, 980, 1310, and 1570 nm, the photodetectors exhibit the photo-current-to-dark-current ratio as high as 28, 15, 2.3, and 1.6, respectively. Under near-infrared illumination, the positive holes confined in the valance band offset between Ge QD and the Si substrate, establishing a built-in electric field (E-field), leading the transient response of the photodetectors as high as 440 MHz.
The other topic of this thesis focused the formation of near-infrared photodetectors with a 1-μm-thick Ge QD/Si heterojunction contained various number of Ge QD/Si stacks by using Ultra-High Vacuum Chemical Vapor Deposition (UHV-CVD), and investigated the photoresponsivity of the photodetectors affected by the number of Ge QD/Si stacks. The photo-current-to-dark-current ratio of the photodetectors is 4000 (0.45 mW), 2200 (0.45 mW), 52 (9.4 mW), and 4.2 (5.4 mW) under illumination at 850, 980, 1310, and 1570 nm, respectively. The open-circuit voltage increases with the number of heterojunction of Ge QD/Si, which indicates the increasing built-in E-field improves the photoresponsivity.
[1] W. C. Dash et al., “Intrinsic optical absorption in single-crystal germanium and silicon at 77℃ and 300℃,” Physical Review, 99, 1151, (1955).
[2] J. Liu et al., “Ge-on-Si optoelectronics,” Thin Solid Films, 520, 3354, (2012).
[3] J. Michael, J. Liu and L. C. Kimerling, “High-performance Ge-on-Si photodetector,” Nature Photonics, 4, 527, (2010).
[4] F. K. LeGoues et al., “Anomalous strain relaxation in SiGe thin films and superlattices,” Physical Review Letters, 64, 1943, (1990).
[5] M. Oehem et al., “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Optics Express, 22, 839, (2014).
[6] S. B. Samavedam and E. A. Fitzgerald, “Novel dislocation structure and surface morphology effects in relaxed Ge/Si-Ge(graded)/Si structure,” Appl. Phys. Lett., 81, 3108, (1997).
[7] H. C. Luan et al., “High-quality Ge epilayers on Si with low threading-dislocation densities,” Appl. Phys. Lett., 79, 3431, (2001).
[8] Q. Li et al., “Selective growth of Ge on Si(100) through vias of SiO2 nanotemplate using solid source molecular beam epitaxy,” Appl. Phys. Lett., 83, 5032, (2003).
[9] J. L. Liu et al., “High-quality Ge films on Si substrates using Sb surfactant-mediated graded SiGe buffers,” Appl. Phys. Lett., 79, 3431, (2001).
[10] 郭銘浩, ““量身訂作”鍺量子點以應用於近紅外線光偵測元件之研製”,碩士論文,國立中央大學,民國 102 年
[11] A. K. Dutta and M. Saif Islam, “Novel broadband photodetector for optical communication,”Proc. of SPIE, 6014, 6014c, (2005).
[12] 施敏,(2002):半導體元件物理與製作技術。新竹市:交大。
[13] C. Y. Chien et al., “Size tunable Ge quantum dots for near-ultraviolet to near-infrared photosensing with high figures of merit,” Nanoscale, 6, 5303, (2014).
[14] B. C. Hsu, et al., “A high efficient 820 nm MOS Ge quantum dot photodetector,” IEEE Electron Device Letters, 24, 318, (2003).
[15] C. H. Lin and C. W. Liu, “MOS Si/Ge photodetectors,” Proc. of SPIE, 6368, 636806, (2006).
[16] H. T. Chang et al., “High quality multifold Ge/Si/Ge composite quantum dots for thermoelectric materials,” Appl. Phys. Lett., 102, 101902, (2013).
[17] D. Brunco et al., “Germanium MOSFET devices: Advances in materials understanding, process development, and electrical performance,” J.Electrochem. Soc, 155, H552, (2008).
[18] W. T. Lai et al., “SiGe quantum dots over Si pillars for visible to near-infrared broadband photodetection,” IEEE Photon. Technol. Lett., 25, 15, (2013).
[19] 吳梓豪, “生成鍺奈米量子點與鍺奈米殼於絕緣層基板上之應用研究”,碩士論文,國立中央大學,民國102年
[20] D.Ahn et al., “High performance, waveguide integrated Ge photodetectors,” Optics Express, 15, 3916, (2007).