跳到主要內容

簡易檢索 / 詳目顯示

研究生: 白國臻
Guo-Jhen Bai
論文名稱: 透過矩陣分解之多目標預測方法預測使用者於特殊節日前之瀏覽行為變化
Predicting User's Browsing Tendency During Holidays by Matrix Factorization based Multi-objective Method
指導教授: 陳弘軒
Hung-Hsuan Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 47
中文關鍵詞: 監督式學習
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年電子商務公司在特殊節日的銷售額大於平日,然而從使用者瀏覽網頁的歷史紀錄中,我們發現僅有並非所有使用者在節日間皆比平時更常造訪電商網站,此現象表示銷售額的提升可能只是來自少數使用者所產生的影響,因此電子商務公司若能透過系統化的方式判別使用者行為,並給予不同行為表現使用者相對應的行銷手段,便能夠使市場行銷策略發揮更大的效能。

    我們提出 Matrix Factorization based Multi-objective Method,當同時有多個待預測的目標時,本模型能有效利用多個預測目標之間可能存在互相影響的隱性因子。相較於為每個目標分別建立獨立的模型,本方法能有效減少模型需學習之參數,因此在訓練樣本數受限的情況,依然能達到有效的訓練結果。我們使用此方法同時預測使用者於特殊節日期間在不同類型網頁的行為變化,結果顯示:本方法在大多數時候能勝過單目標之訓練模型。


    It is reported that sales by e-commerce companies were greater than usual during shopping holidays and festivals. However, based on users’ browsing logs, we found that not all users visit e-commerce websites more often than they normally do during holidays. Therefore, the increase in sales may come from the purchase behaviors of a small number of users. If the e-commerce companies can systematically assess and analyze user behaviors, they might be able to apply customized marketing method to maximize the effectiveness of their sales strategies.

    This study proposes a matrix factorization based multi-objective method, which effectively uses the latent variables that represent possible interactions among multiple targets. Compared with establishing separate models for each target, this method can effectively reduce the parameters that the model needs to learn, and can, therefore, achieve an effective training outcome even when training samples are limited. We use this method to simultaneously predict users’ behaviors on different types of web pages during shopping holidays and festivals. The results show that this method can outperform the single target training model most of the time.

    中文摘要 p.i ABSTRACT p.ii 目錄 p.iii 圖目錄 p.v 表目錄 p.vi 一、緒論 p.1 1.1 研究動機 p.1 1.2 研究目標 p.1 1.3 研究貢獻 p.2 1.4 論文架構 p.3 二、相關研究 p.4 2.1 使用者在Pinterest 使用行為分析 p.4 2.2 使用者圈影響力之推薦策略 p.5 2.3 Matrix Factorization介紹 p.5 三、MF based Multi-objective Method p.8 3.1 MF based Multi-objective Method概述 p.8 3.2 訓練模型 p.9 3.3 測試模型 p.10 3.4 Multi-objective method與Single-objective method的比較 p.10 四、實驗介紹 p.12 4.1 問題描述 p.12 4.2 資料集介紹 p.14 4.2.1 真實資料集 p.14 4.2.2 建立擬真資料集 p.17 4.3 真實資料集前處理 p.19 4.4 特徵說明 p.20 4.5 預測分類器介紹 p.22 五、實驗分析 p.23 5.1 實驗介紹 p.23 5.2 模型預測效果之評估指標 p.23 5.3 真實資料集之結果分析 p.24 5.4 資料量對MF based Multi-objective Method之影響分析 p.26 六、結論與未來展望 p.29 6.1 結論 p.29 6.2 未來展望 p.30 參考文獻 p.32

    [1] “E-Commerce Continues To Be The Bright Spot For Holiday Sales,” https://www.forbes.com/sites/shoptalk/2016/12/27/ecommerce-continues-to-bethe- bright-spot-for-holiday-sales/28b1f6bb2780, accessed: 2017-06-15.
    [2] “Alibaba’s Singles’ Day: What We Know About The World’s Biggest Shopping Event,” https://www.forbes.com/sites/franklavin/2016/11/06/alibabas-singles-daywhat- we-know-about-the-worlds-biggest-shopping-event/687e1e636da7, accessed:
    2017-06-15.
    [3] C. Lo, D. Frankowski, and J. Leskovec, “Understanding behaviors that lead to purchasing: A case study of pinterest,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016, pp. 531–540.
    [4] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of influence through a social network,” in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2003, pp. 137–146.
    [5] J. Leskovec, A. Singh, and J. Kleinberg, “Patterns of influence in a recommendation network,” in Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 2006, pp. 380–389. 32
    [6] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, 2009.
    [7] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent semantic analysis,” Discourse processes, vol. 25, no. 2-3, pp. 259–284, 1998.
    [8] S. Ruder, “An overview of multi-task learning in deep neural networks,” arXiv
    preprint arXiv:1706.05098, 2017.

    QR CODE
    :::