跳到主要內容

簡易檢索 / 詳目顯示

研究生: 孫柏鈞
Po-Chun Sun
論文名稱: Time Evolution of the Holographic Entanglement Entropy from Black Hole Thermalization
指導教授: 陳江梅
Chiang-Mei Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 54
中文關鍵詞: 全像理論反德西特/共形場論對偶霍金粒子糾纏熵量子極面黑洞資訊悖論
外文關鍵詞: Holography, AdS/CFT, Hawking Radiation, Entanglement Entropy, Quantum Extremal Island, Information Paradox
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們藉由全像原理,考慮Hartle–Hawking 狀態下,(n+1)維度的永恆黑洞在反德西特空間(AdS)偶合到具有保角對稱的熱庫(CFT reservoir),來研究霍金輻射的糾纏熵在(n+1)維的Kerr-Newman黑洞蒸發的過程隨時間演化。 試想保角熱庫對偶到(n+2)維重力空間,而原本我們所考慮的(n+1)維度的反德西特空間黑洞被嵌入在高一維的流形,則此情況完全可以用Randall–Sundrum模型來描述。

    根據島規則,糾纏熵在半古典重力可以分為來自量子效應與重力的貢獻。 其中量子效應可以用Ryu–Takayanagi公式來得到,而重力部分等於量子極面(quantum extremal surface)除以四倍的牛頓常數。 我們展示了在此全像系統演化晚期,糾纏熵成長是線性的。 過了佩吉時間(Page time),量子極面出現並且系統達到飽和。在這篇論文中,我們將強調在任意維度的時空,黑洞旋轉如何如何引響其糾纏熵。


    We study the time evolution of the entanglement entropy of Hawking radiation in the (n+1)-dimensional Kerr-Newman black hole evaporation by the holographic approach that considering the (n+1)-dimensional AdS eternal black brane coupled to the auxiliary CFT reservoir is in the Hartle-Hawking state. The CFT reservoir itself has a holographic dual, the (n+2)-dimensional bulk geometry, and the original (n+1)-dimensional AdS-black brane is embedded into such bulk manifold, which is precisely Randall–Sundrum model.

    According to the island rule, the entanglement entropy in semi-classical gravity can be divided into two parts, one is due to the quantum effects, which can be obtained by Ryu–Takayanagi conjecture. Another is the gravitational part, which is equal to the area of the quantum extremal surface divided by four times the Newton's constant. We show that the entanglement growth in our holographic system is linear in late times. After Page time, the system reaches saturation since the entanglement islands appear. In this thesis, we will emphasize how black hole rotation affects entanglement entropy in general dimensional spacetime.

    Chinese Abstract ix English Abstract xi Acknowledgements xiii List of Figures xvii 1 Introduction 1 1.1 Holographic Entanglement Entropy . . . . . . . . . . . . . . . . . . . . .1 1.2 Entanglement Entropy of Hawking Radiation . . . . . . . . . . . . . . . . 3 1.3 Cylindrical Kerr-Newman Black Brane . . . . . . . . . . . . . . . . . . . 4 2 Holography Setup 7 2.1 Review AdS/BCFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Black Brane Thermalization . . . . . . . . . . . . . . . . . . . . . . . .8 2.3 Induced Gravity on Planck Brane . . . . . . . . . . . . . . . . . . . . . 9 2.3.1 AdS on the Brane . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.3.2 Black Hole on the Brane . . . . . . . . . . . . . . . . . . . . . . . . 10 3 Time Evolution of Wormhole Area 13 3.1 Dynamics of Wormhole . . . . . . . . . . . . . . . . . . . . . . . . . . .13 3.2 Late Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 4 Saturation and Quantum Extremal Island 17 5 Conclusions 19 5.1 Entanglement Growth during Thermalization . . . . . . . . . . . . . . . . 19 5.2 Saturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 5.3 Quantum Information during Evaporation . . . . . . . . . . . . . . . . . 20 Appendices 21 A HEE in Cylindrical Kerr-Newman Black Brane 23 A.1 Integration form of Area and Boundary . . . . . . . . . . . . . . . . . . 23 A.2 Entanglement Entropy in the Small R Limit . . . . . . . . . . . . . . . . 25 A.2.1 Relation Between φR and η . . . . . . . . . . . . . . . . . . . . . . 25 A.2.2 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 A.3 Entanglement Entropy in the Large R Limit . . . . . . . . . . . . . . . . 28 References 31

    [1] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, “The Page curve of Hawking radiation from semiclassical geometry,” JHEP 03, 149 (2020) [arXiv:1908.10996[hep-th]].
    [2] G. ’t Hooft, “Dimensional reduction in quantum gravity,” Conf. Proc. C 930308, 284-296 (1993) [arXiv:gr-qc/9310026 [gr-qc]].
    [3] L. Susskind, “The World as a hologram,” J. Math. Phys. 36, 6377-6396 (1995)[arXiv:hep-th/9409089 [hep-th]].
    [4] J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113-1133 (1999) [arXiv:hep-th/9711200[hep-th]].
    [5] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428, 105-114 (1998)[arXiv:hep-th/9802109 [hep-th]].
    [6] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253-291 (1998) [arXiv:hep-th/9802150 [hep-th]].
    [7] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006) [arXiv:hep-th/0603001[hep-th]].
    [8] S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement Entropy,” JHEP 08, 045 (2006) [arXiv:hep-th/0605073 [hep-th]].
    [9] T. Nishioka, S. Ryu and T. Takayanagi, “Holographic Entanglement Entropy: An Overview,” J. Phys. A 42, 504008 (2009) [arXiv:0905.0932 [hep-th]].
    [10] T. Takayanagi, “Entanglement Entropy from a Holographic Viewpoint,” Class. Quant. Grav. 29, 153001 (2012) [arXiv:1204.2450 [gr-qc]].
    [11] M. Rangamani and T. Takayanagi, “Holographic Entanglement Entropy,” Lect. Notes Phys. 931, pp.1-246 (2017) [arXiv:1609.01287 [hep-th]].
    [12] J. Bhattacharya, M. Nozaki, T. Takayanagi and T. Ugajin, “Thermodynamical Property of Entanglement Entropy for Excited States,” Phys. Rev. Lett. 110, no.9, 091602 (2013) [arXiv:1212.1164 [hep-th]].
    [13] H. Nadi, B. Mirza, Z. Sherkatghanad and Z. Mirzaiyan, “Holographic entanglement first law for d + 1 dimensional rotating cylindrical black holes,” Nucl. Phys. B 949, 114822 (2019) [arXiv:1904.11344 [gr-qc]].
    [14] P. Caputa, V. Jejjala and H. Soltanpanahi, “Entanglement entropy of extremal BTZ black holes,” Phys. Rev. D 89, no.4, 046006 (2014) [arXiv:1309.7852[hep-th]].
    [15] W. Fischler and S. Kundu, “Strongly Coupled Gauge Theories: High and Low Temperature Behavior of Non-local Observables,” JHEP 05, 098 (2013) [arXiv:1212.2643[hep-th]].
    [16] P. Chaturvedi, V. Malvimat and G. Sengupta, “Entanglement thermodynamics for charged black holes,” Phys. Rev. D 94, no.6, 066004 (2016) [arXiv:1601.00303[hep-th]].
    [17] S. Kundu and J.F. Pedraza, “Aspects of Holographic Entanglement at Finite Temperature and Chemical Potential,” JHEP 08 177 (2016) [arXiv:1602.07353[hep-th]].
    [18] S. Karar, D. Ghorai and S. Gangopadhyay, “Holographic entanglement thermodynamics for higher dimensional charged black hole,” Nucl. Phys. B 938, 363-387 (2019)[arXiv:1810.08037 [hep-th]].
    [19] A. Saha, S. Gangopadhyay and J. P. Saha, “Holographic entanglement entropy and generalized entanglement temperature,” Phys. Rev. D 100, no.10, 106008 (2019)[arXiv:1906.03159 [hep-th]].
    [20] V. E. Hubeny, “Extremal surfaces as bulk probes in AdS/CFT,” JHEP 07, 093 (2012)[arXiv:1203.1044 [hep-th]].
    [21] H. Liu and M. Mezei, “Probing renormalization group flows using entanglement entropy,”JHEP 01, 098 (2014) [arXiv:1309.6935 [hep-th]].
    [22] V. E. Hubeny, M. Rangamani and T. Takayanagi, “A Covariant holographic entanglement entropy proposal,” JHEP 07, 062 (2007) [arXiv:0705.0016[hep-th]].
    [23] H. Liu and S. J. Suh, “Entanglement Tsunami: Universal Scaling in Holographic Thermalization,” Phys. Rev. Lett. 112, 011601 (2014) [arXiv:1305.7244[hep-th]].
    [24] H. Liu and S. J. Suh, “Entanglement growth during thermalization in holographic systems,” Phys. Rev. D 89, 066012 (2014) [arXiv:1311.1200 [hep-th]].
    [25] P. Caputa, G. Mandal and R. Sinha , “Dynamical entanglement entropy with angular momentum and U(1) charge,” JHEP 11 052 (2013) [arXiv:1306.4974[hep-th]].
    [26] P. C. Sun, D.-S. Lee and C. P. Yeh, “Holographic approach to thermalization in general anisotropic theories,” JHEP 03, 164 (2021) [arXiv:2011.02716 [hep-th]].
    [27] T. Faulkner, A. Lewkowycz and J. Maldacena , “Quantum corrections to holographic entanglement entropy,”JHEP 11 074 (2013) [arXiv:1307.2892 [hep-th]].
    [28] N. Engelhardt and A. C. Wall, “Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime,” JHEP 01 073 (2015)[arXiv:1408.3203 [hep-th]].
    [29] G. Penington, “Entanglement Wedge Reconstruction and the Information Paradox,”JHEP 09 002 (2020) [arXiv:1905.08255 [hep-th]].
    [30] A. Almheiri, N. Engelhardt, D. Marolf and H. Maxfield,“The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole,” JHEP 12 063 (2019) [arXiv:1905.08762 [hep-th]].
    [31] A. Almheiri, R. Mahajan and J. Maldacena, “Islands outside the horizon,”[arXiv:1910.11077 [hep-th]].
    [32] A. Almheiri, R. Mahajan and J. E. Santos, “Entanglement islands in higher dimensions,” SciPost Phys. 9 1, 001 (2020) [arXiv:1911.09666 [hep-th]].
    [33] Y. Ling, Y. Liu and Z.-Y. Xian, “Island in Charged Black Holes,”JHEP 03 251 (2021)[arXiv:2010.00037 [hep-th]].
    [34] H.-Z. Chen, R. C. Myers, D. Neuenfeld, I. A. Reyes and J. Sandor, “Quantum Extremal Islands Made Easy, Part I: Entanglement on the Brane,” JHEP 10 166 (2020)[arXiv:2006.04851 [hep-th]].
    [35] H.-Z. Chen, R. C. Myers, I. A. Reyes and J. Sandor, “Quantum Extremal Islands Made Easy, Part II: Black Holes on the Brane,” JHEP 12 025 (2020)[arXiv:2010.00018 [hep-th]].
    [36] D. Carmi, S. Chapman, H. Marrochio, R. C. Myers and S. Sugishita, “On the Time Dependence of Holographic Complexity,” JHEP 11 188 (2017) [arXiv:1709.10184[hep-th]].
    [37] T. Hartman and J. Maldacena, “Time evolution of entanglement entropy from black hole interiors,”JHEP 05 014 (2013) [arXiv:1303.1080 [hep-th]].
    [38] A. M. Awad, “Higher dimensional charged rotating solutions in (A)dS spacetimes,” Class. Quant. Grav. 20, 2827-2834 (2003) [arXiv:hep-th/0209238[hep-th]].
    [39] M. H. Dehghani and A. Khodam-Mohammadi, “Thermodynamics of a d−dimensional charged rotating black brane and the AdS/CFT correspondence,” Phys. Rev. D 67, 084006 (2003) [arXiv:0212126 [hep-th]].
    [40] T. Takayanagi, “Holographic Dual of a Boundary Conformal Field Theory,” Phys. Rev. Lett. 107, 101602 (2011) [arXiv:1105.5165 [hep-th]].
    [41] M. Fujita, T. Takayanagi and E. Tonni, “Aspects of AdS/BCFT,” JHEP 11 043 (2011)[arXiv:1108.5152 [hep-th]].
    [42] C.-S Chu and R.-X Miao, “Anomalous Transport in Holographic Boundary Conformal Field Theories,” JHEP 07 005 (2018) [1804.01648 [hep-th]].
    [43] T. Nishioka, “Entanglement entropy: holography and renormalization group,” Rev. Mod. Phys. 90, 035007 (2018). [arXiv:1801.10352 [hep-th]].
    [44] R.-X Miao, “An Exact Construction of Codimension two Holography,” JHEP 01 150 (2021) [arXiv:2009.06263 [hep-th]].

    QR CODE
    :::