| 研究生: |
黃亭維 Ting-Wei Huang |
|---|---|
| 論文名稱: |
應用脈衝雷射技術製備高穩定性與高性能之鉑奈米顆粒並應用於燃料電池觸媒層 Production of Improved Stability and High Performance Pt-Nanoparticle Catalyst using Pulsed Laser for PEMFC Application |
| 指導教授: |
曾重仁
Chung-Jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 脈衝雷射沉積法 、質子交換膜燃料電池 、質量比功率密度 、電化學活性表面積 、氧還原反應 |
| 外文關鍵詞: | Pulsed laser deposition, PEM fuel cell, Mass specific power density, Electrochemical active surface area, Oxygen reduction reaction |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用脈衝雷射沉積法(Pulsed Laser Deposition, PLD)製備鉑奈米顆粒並應用於燃料電池觸媒層。應用在陽極端上可達到Pt使用量僅需17 μg/cm2,而電池性能在0.6 V的電流密度可以達到約1080 mA/cm2,其性能近似市面上主流之傳統塗佈製程之觸媒(Pt使用量為200 μg/cm2 ),觸媒之減量約12倍。根據相關形貌以及電化學性能之檢測,使用PLD製備的觸媒層其厚度極薄而且鉑奈米顆粒分散均勻,在電池中具有較高的利用率。而在化學耐久性方面,PLD之樣品在加速老化測試(Accelerated Degradation Test, ADT)中也具有優異的性能表現。在經過5000圈循環測試後仍保有約60 %的化學活性表面積,此結果顯示了PLD的基材選擇自由度高,可以使用具有較高石墨化的碳材做為觸媒載體,是故能夠有非常良好的話學穩定性。
而將此技術應用在製備電池的陰極觸媒層,可在Pt用量為100 μg/cm2時具有在0.6V之電流密度為1200 mA/cm2之電池性能,此表現已經與鉑擔載量為400 μg/cm2之商用觸媒幾乎一樣。根據電化學診斷,PLD所製備的觸媒可以在降低鉑擔載量的同時,仍然保有優良的觸媒活性,推論是因為由PLD建立的觸媒微結構,比起傳統的塗佈製程,更能夠建立有效的三相點,提高觸媒利用率。
Pulsed laser deposition (PLD) in Ar atmosphere is used to deposit Pt nanoparticle onto gas diffusion layer (GDL), and its application in PEM fuel cell is optimized and characterized. When used at anode side, with a Pt loading of 17 μg/cm2, the current density at 0.6 V in fuel cell test reaches 1100 mA/cm2, and the performance is almost the same as the commercial product with 200 μg/cm2 Pt loading. The high performance of PLD based PEM fuel cell could be ascribed to thinner catalyst layer, good dispersion of Pt particles on GDL, and small particle sizes of 2–3 nm, which lead high utilization of catalyst in cell operating. In addition, it was found that the PLD-produced catalyst on GDL exhibits a much higher electrochemical durability than E-TEK Pt /C, which can be ascribed to the much higher degree of graphitization of GDL than carbon black. The results show that the catalyst support of PLD method can be a high degree of graphitization carbon-based support, which can dramatically increase the durability of the catalyst/support.
The cell performance of 1200 mA/cm2 was achieved by using only 100 g/cm2 Pt loading produced by PLD. The cell performance of PLD sample is almost the same as commercial catalyst with 400 μg/cm2 Pt loading. According the result of electrochemical test, the PLD-made catalyst shows a good activity with a low Pt loading, which can be ascribe to the catalyst structure produced by PLD is more closed to the ideal catalyst structure. The higher possibility of production of effective three-phase point of PLD-made structure will lead a good catalyst utilization efficiency.
[1] 王智薇, “淺談新興能源科技產業─氫能與燃料電池”,產經資訊,(2008).
[2] R. O’Hayre, S.W. Cha, W. Colella, and F.B. Prinz, Fuel cell fundamentals, John Wiley & Sons, (2005).
[3] S. M. Haile, “Fuel cell material and components”, Acta Materialia, 51, 2003, pp.5981-6000, (2003).
[4] Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X.C. Adronher. “A review of polymer electrolyte membrane fuel cells:Technology, applications and needs on fundamental research”, Applied Energy, 88, 981-1007 (2011).
[5] Y. F. Zhai, H. Zhang, D.Xing, and Z. G. Shao, “The stability of Pt/C catalyst in H3PO4/PBI PEMFC during high temperature life test”, J. Power Sources, 164, 126-133, (2007).
[6] J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, and W. Merida, “A review of PEM fuel cell durability:Degradation mechanisms and mitigation strategies”, J. Power Sources, 184, 104-119, (2008).
[7] A. Brouzgou, S. Q. Song, and P. Tsiakaras, “Low and non-platinum electrocatalysts for PEMFCs: Current status, challenges and prospects”, Applied Catalysis B: Environmental, 127,371-388, (2012).
[8] C. Wang, M. Waje, X. Wang J. M. Tang, R. C. Haddon, and Yushan, “Proton exchange membrane fuel cells with carbon nanotube based electrodes”, Nano Lett., 4, 345–348, (2004).
[9] L. Xiong, A. Manthiram, “High performance membrane-electrode assemblies with ultra-low Pt loading for proton exchange membrane fuel cells”, Electrochim. Acta, 50, 3200-3204, (2005).
[10] H. N. Su, S. J. Liao, T. Shu, H. L. Gao, “Performance of an ultra-low platinum loading membrane electrode assembly prepared by a novel catalyst-sprayed membrane technique”, J. Power Sources, 195, 756-761, (2010).
[11] http://www.toray-eng.com/lcd/coater/lineup/esc.html
[12] H. Morikawa, N. Tsuihiji, T. Mitsui, and K. Kanamura, “Preparation of membrane electrode assembly for fuel cell by using electrophoretic deposition process”, J. Electrochem. Soc., 151, 1733-1737, (2004).
[13] F. F. Onana, N. Guillet, A. M. AlMayouf, “Modifed pulse electrodeposition of Pt nanocatalyst as high-performance electrode for PEMFC”, J. Power Sources, 271, 401-405, (2014).
[14] H. Kim, N.P. Subramanian, B.N. Popov, “Preparation of PEM fuel cell electrodes using pulse electrodeposition”, J. Power Sources, 138, 14-24, (2004).
[15] S. Cuynet, A. Caillard, T. Lecas, J. Bigarre, P. Buvat, P. Brault, “Deposition of Pt inside fuel cell electrodes using high power impulse magnetron sputtering”, J. Phys. D: Appl. Phys., 47, 272001, (2014).
[16] M. S. Cogenli, S. Mukerjee, A. B. Yurtcan, “Membrane electrode assembly with ultralow platinum loading for cathode electrode of PEM fuel cell by using sputter deposition”, Fuel Cells, 15, 288-297, (2015).
[17] A. Khan, B. K. Nath, J. Chutia, “Nanopillar structured platinum with enhanced catalytic utilization for electrochemical reactions in PEMFC”, Electrochim. Acta, 146, 171-177, (2014).
[18] M.S. Saha, A.F. Gull´, R.J. Allen, S. Mukerjee, “High performance polymer electrolyte fuel cells with ultra-low Pt loading electrodesprepared by dual ion-beam assisted deposition”, Electrochim. Acta, 51, 4680-4692, (2006).
[19] https://www.itrc.narl.org.tw/Bulletin/News/ald.php
[20] T. Shu, D. Dang, D. W. Xu, R. Chen, S. J. Liao, C. T. Hsieh, A. Su, H. Y. Song, L. Du, “High-performance MEA prepared by direct deposition of platinum on the gas diusion layer using an atomic layer deposition technique”, Electrochim. Acta, 177, 168-173, (2015).
[21] N. Cunningham, E. Irissou, M. Lefe`vre, M. C. Denis, D. Guay, “PEMFC anode with very low Pt loadings using pulsed laser deposition”, Electrochem. Solid-State Lett., 6, 125-128, (2003).
[22] W. Mroz, B. Budner, W. Tokarz, P. Piela, M. L. Korwin-Pawlowski, “Ultra-low-loading pulsed-laser-deposited platinum catalyst films for polymer electrolyte membrane fuel cells”, J. Power Sources, 273, 885-893, (2015).
[23] H. Xu, E. Brosha, F. Garzon, F. Uribe, M. Wilson and B. Pivovar, “The effect of electrode ink processing and composition catalyst utilization” ECS Trans., 11, 383–91, (2007).
[24] M. K. Debe, “Electrocatalyst approaches and challenges for automotive fuel cells”, Nature, 486, 43-51, (2012)
[25] C. Hamel, S. Garbarino, E. Irissou, F. Laplante, M. Chaker, D. Guay,“Influence of the velocity of Pt ablated species on the structural and electrocatalytic properties of Pt thin films”, Int. J. Hydrogen Energy, 35, 8486-8493, (2010)..
[26] S. Garbarino, A. Pereira, C. Hamel, E. Irissou, M. Chaker, and D. Guay, “Effect of size on the electrochemical stability of Pt nanoparticles deposited on gold substrate”, J. Phys. Chem., 114, 2980-2988, (2010).
[27] B. Dahotre, “Laser surface engineering”, Advanced Material & Process, 34-38, (2002).
[28] A. Ibrahim, H. Salem, S. Sedky, “Excimer laser surface treatment of plasma sprayed alumina–13% titania coatings”, Surface and Coatings Technology, 203, 3579-3589, (2009).
[29] O. Antoine, Y, Bultel, R, Durand, “Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®”, J. Electro. Chem., 499, 85-94, (2001).
[30] M. Dhirde, V. Dale, H. Salehfar, D. Mann, T. H. Han, “Equivalent Electric Circuit Modeling and Performance Analysis of a PEM Fuel Cell Stack Using Impedance Spectroscopy”, IEEE Transactions On Energy Conversion, 25, 778-786, (2010).
[31] 林冠任, “利用脈衝雷射沉積技術成長PEMFC 鉑奈米顆粒觸媒”,國立中央大學機械工程研究所碩士論文,(2015).
[32] Z. Qi, A. Kaufman, “Low Pt loading high performance cathodes for PEM fuel cells”, J. Power Sources, 113, 37-43, (2003).
[33] E. Antolini, L. Giorgi, A. Pozio, E. Passalacqua, “Influence of nafion loading in the catalyst layer of gas diffusion electrodes for PEMFC”, J. Power Sources, 77, 136-142, (1999).
[34] S.W. Mahlon, A.V. Judith, G. Shimshon, “Low Platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers”, Electrochimica Acta, 40, 355-363, (1995).
[35] T. Frey, M. Linardi, “Effects of membrane electrode assembly preparation on the polymer electrolyte membrane fuel cell performance”, Electrochimica Acta, 50, 99-105, (2004).
[36] A. L. Patterson, “The Scherrer formula for x-ray particle size determination” Phys. Rev., 56, 978–82, (1939).
[37] http://www.xpsfitting.com/2012/08/spin-orbit-splitting.html
[38] J. M. Rodríguez, J. A. H. Melivn and J. P. Peña, “Determination of the real surface area of Pt electrodes by hydrogen adsorption using cyclic voltammetry”, J. Chem. Educ., 77, 1195–7, (2000).
[39] X. Wang, Z. Tan, M. Zeng and J. Wang, “Carbon nanocages: a new support material for Pt catalyst with remarkably high durability”, Sci. Rep., 4, 4437,(2014).
[40] Y. Xia et al., “Development of half-cells with sulfonated Pt/Vulcan catalyst for PEM fuel cells”, J. Electroana. Chem., 724, 62-70, (2014).
[41] D. A. Jones, “Principle and Prevention of Corrosion”, Pearson, 2nd edition, (1995).
[42] C. J. Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang and S. K. Lo, “A PEM fuel cell with metal foam as flow distributor”, Energy Convers. Manage., 62, 14–21, (2012).
[43] 吳佩蓉,「腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究」,國立中央大學能源工程研究所碩士論文,2013
[44] Y. Shao, G. Yin, Y. Gao, “Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell”, J. Power Sources, 171, 558–566, (2007).
[45] P. Lespade, R. Al-Jishi and M. S. Dresselhaus, “Model for Raman scattering from incompletely graphitized carbons”, Carbon, 20, 427–31, (1982).
[46] L. Zou, B. Huang, Y. Huang, Q. Huang and C. Wang, “An investigation of heterogeneity of the degree of graphitization in carbon–carbon composites”, Mater. Chem. Phys., 82, 654–62, (2003).