跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖家賢
Chia-Hsien Liao
論文名稱: 在伺服系統中摩擦力控制與補償之研究
The Research of the Friction Control and Compensation in the Servo System
指導教授: 周復初
Fu-Chu Chou
董必正
Pi-Cheng Tung
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 97
語文別: 英文
論文頁數: 81
中文關鍵詞: 摩擦力補償器
外文關鍵詞: friction, compensation
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文裡提出了一個可以消除伺服系統的摩擦力或是未知干擾的強健型補償器和另一個限制增益(Gain Limit)補償器。在第一個補償器裡,包括了一個預估系統數學模型的倒數、一個濾波器、與輸入命令的扣抵和一個積分項。這個補償器有效的抵消伺服系統裡的摩擦力和未知的干擾, 除此之外,再透過一個滑差模式控制器(Sliding Mode Controller)消除補償器未完全消除的干擾項。這個控制的方法可以有效的消除摩擦力和未知的干擾項且不需要事先知道摩擦力的模型和預估。模擬和實驗的結果可以證明這個方法可以有效的且實際的利用到實際的伺服系統中。
    在高精度的定位系統中, 控制器的高增益引起的極限循環(Limit Cycles)明顯的減低伺服系統的定位性能。在第二個補償的方法, 包括一個Dead-Zone 函式和一個積分項, 可以使系統維持在穩定的狀態。這個補償器不但可以確保系統在穩定的狀態,更提供了一個簡單又有效的方法使得使用者在設定增益的時候,避免因為不預期的設定, 使得系統產生極限循環的現象, 讓系統的性能減低。模擬的結果證明此一方法可以有效的避免極限循環,且可以在實際的例子中使用。


    A novel friction and modelling uncertainty compensation and a gain limitcompensator for a ball-screw table system are presented. The first scheme consisting of an inverse of the nominal model with an input deduction, a filter, and an integral term. This control scheme can compensate for frictional effects and modelling uncertainty inherent in the ball-screw mechanism. In addition, when further combined with a conventional sliding-mode controller (SMC), this controller can help to counteract the effects of residual frictional torque and residual modelling uncertainty.The proposed control scheme successfully compensates for frictional effects and modeling uncertainty without requiring any prior knowledge of the friction model. Simulation and experimental results confirm the ability of the proposed scheme to compensate for the effects of friction and modelling uncertainty in a practical application.
    In high-precision positioning systems, the limit cycles induced by friction effects result in a significant reduction in the positioning performance; particularly when the servo system utilizes a high gain controller. Accordingly, the second scheme presents a compensation scheme consisting of a dead-zone function and an integral term to limit the equivalent gain of unspecified controllers to the stable range. The proposed compensation scheme not only ensures that the feedback loop system remains stable, but also provides a simple and effective mechanism for preventing the users from inadvertently setting control gains which degrade the positioning performance of the system. The simulation results confirm the ability of the gain limit compensation scheme to suppress the effects of limit cycles and therefore demonstrate its feasibility for practical applications.

    摘要.............................................V 誌謝.............................................VI 第一章 簡介....................... ..............VII 第二章 一個在直流馬達上實現的強健型補償器........IX 第三章 應用在伺服系統中消除極限循環( LIMIT CYCLES ) 的增益限制補償器.......................................X 第四章 總結..................................... XI 附錄............................................ XII ABSTRACT................ XV LIST OF FIGURES ........ XVII LIST OF TABLES ......... XX Chapter1 INTRODUCTION ........ 1 Chapter2 A NOVEL ROBUST DISTURBANCE COMPENSATION SCHEME FOR D.C. SERVOMOTORS ........... 6 2.1 System Model ............. 6 2.2 Friction and Uncertainty Compensation Controller Design ....... 9 2.2.1 Friction and Uncertainty Compensation Scheme ............. 10 2.2.2 Combined Friction and Uncertainty Compensation Scheme and Sliding-Mode Controller ............ 13 2.2.2.1 Assumption 1 ........ 15 2.2.2.2 Assumption 2 ......... 15 2.2.2.3 Assumption 3 ....... 15 2.2.2.4 Theorem 1 ......... 17 2.3 Experimental System ........... 19 2.4 Simulation and Experimental Results ........ 25 Chapter3 SUPPRESSION OF LIMIT CYCLES IN SERVO SYSTEMS USING GAIN LIMIT COMPENSATOR .......... 40 3.1 Gain Limit Compensator Design ......... 41 3.2 Illustrative Example ........ 49 Chapter 4 CONCLUSIONS ........... 54 REFERENCES ....... 56

    1. Friedland, B. and Park, Y.-J. On adaptive friction compensation. IEEE Trans. Autom. Control, 1992, 37(10), 1609–1612.
    2. Karnopp, D. Computer simulation of stick–slip friction in mechanical dynamic systems. Trans. ASME, J. Dynamic Syst., Measmt, and Control, 1985, 107(1), 100–103.
    3. Armstrong-Helouvry, B., Dupont, P., and Canudas de Wit, C. A survey of models,analysis tools and compensation methods for the control of machines with friction. Automatica, 1994, 30(7), 1083–1138.
    4. Dahl, P. R., A solid friction model, Technical report TOR-158(3107-18), the Aerospace Corporation, El Segundo, California, 1968.
    5. Haessig Jr, D. A. and Friedland, B. On the modeling and simulation of friction. Trans. ASME, J. Dynamic Syst., Measmt, and Control, 1991, 113(3), 354–362.
    6. Canudas de Wit, C., Olsson, H., Astrom, K. J., and Lischinsky, P. A new model for control of systems with friction. IEEE Trans. Autom. Control, 1995, 40(3), 419–425.
    7. Canudas de Wit, C. and Lischinsky, P. Adaptive friction compensation with partially known dy namic friction model. Int. J. Adaptive Control and Signal Processing, 1997, 11(1), 65–80.
    8. Hensen, R. H. A., van de Molengraft, M. J. G., and Steinbuch, M. Frequency domain identification of dynamic friction model parameters. IEEE Trans. Control Syst. Technol., 2002, 10(2).
    9. Papadopoulos, E. G. and Chasparis, G. C. Analysis and model-based control of servomechanisms with friction. J. Dynamic Syst., Measmt, and Control, 2004, 126(4), 911–915.
    10. Marton, L. and Lantos, B. Modeling, identification, and compensation of stick–slip friction. IEEE Trans. Ind. Electronics, 2007, 54(1), 511–521.
    11. Jatta, F., Legnani, G., and Visioli, A. Friction compensation in hybrid force/velocity control of industrial manipulators. IEEE Trans. Ind. Electronics, 2006, 53(2), 604–613.
    12. Khayati, K., Bigras, P., and Dessaint, L.-A. A multistage position/force control for constrained robotic systems with friction: joint-space decomposition, linearization, and multiobjective observer/controller synthesis using LMI formalism. IEEE Trans. Ind. Electronics, 2006, 53(5), 1698–1712.
    13. Tung, P.-C. and Chen, S.-C. Experimental and analytical studies of the sinusoidal dither signal in a d.c. motor system. Dynamics and Control, 1993, 3(1), 53–69.
    14. Hashimoto, M. and Kiyosawa, Y. Experimental study on torque control using harmonic drive builtin torque sensors. J. Robotic Syst., 1998, 15(8), 435–445.
    15. Zhang, J., Chan, W. C., Wang, A., and Barton, T. H. Synthesis of optimal sliding mode control for robust DC drive. In Conference Record of the 1988 IEEE Industrial Applications Society Annual Meeting, Pittsburgh, Pennsylvania, 1988, pp. 535–542.
    16. Song, G., Cai, L., Wang, Y., and Longman, R. W. A sliding-mode based smooth adaptive robust controller for friction compensation. Int. J. Robust and Nonlinear Control, 1998, 8, 725–739.
    17. Ohishi, K., Ohnishi, K., and Miyachi, K. Adaptive DC servo drive control taking force disturbance suppression into account. IEEE Trans. Ind. Applic., 1988, 24(1), 171–176.
    18. Umeno, T. and Hori, Y. Robust speed control of DC servomotors using modern two degrees-of-freedom controller design. IEEE Trans. Ind. Electronics, 1991, 38(5), 363–368.
    19. Chen, Y. D., Tung, P. C., and Fuh, C. C. Modified Smith predictor scheme for periodic disturbance reduction in linear delay systems. J. Process Control, 2007, 17(10), 799–804.
    20. Ro, P. I., Shim, W., and Jeong, S. Robust friction compensation for submicrometer positioning and tracking for a ball-screw-driven slide system. Precision Engng, 2000, 24(2), 160–173.
    21. Han, S. I. Disturbance observer-based sliding mode control for the precise mechanical system with the bristle friction model. Int. J. Korean Soc. Precision Engng, 2003, 4(5), 5–14.
    22. Iwasaki, M., Takei, H., and Matsui, N. GMDH based modeling and feedforward compensation for nonlinear friction in table drive systems. IEEE Trans. Ind. Electronics, 2003, 40(6), 1172–1178.
    23. Chen, C. L., Jang, M. J., and Lin, K. C. Modeling and high precision control of ball-screw driven stage. Precision Engng, 2004, 28(4), 483–495.
    24. Chen, C. L., Lin, K. C., and Hsieh, C. Presliding friction mode: modeling and experimental study with a ball-screw-driven setup. Mathl and Computer Modeling of Dynamical Syst., 2005, 11(4), 397–410.
    25. Choi, J. J., Han, S. I., and Kim, J. S. Development of a novel dynamic friction model and precise tracking control using adaptive back-stepping sliding mode controller. Mechatronics, 2006, 16(2), 97–104.
    26. Cheng, C. C., Chen, C. Y., and Chiu, G. T. C. Predictive control with enhanced robustness for precision positioning in frictional environment. IEEE Trans. Mechatronics, 2002, 7(3), 385–392.
    27. Mao, J., Tachikawa, H., and Shimokohbe, A. Double integrator control for precision positioning in the presence of friction. Precision Engng, 2003, 27(4),60419–428.
    28. Nuninger, W., Balaud, B., and Kratz, F. Disturbance rejection using output and input estimation application to the friction compensation of a d.c. motor. Control Engng Practice, 1997, 5(4), 447–483.
    29. E. Rabinowicz, A Study of the stick-slip process, Friction and Wear, Editor Robert Davies, Elsevier Publishing Co.,New York, 1959.
    30. Slotine, J.-J. E. and Li, W. Applied nonlinear control, 1991 (Prentice-Hall, Englewood, New Jersey).
    31. Altpeter, F., Grunenberg, M., Myszkorowski, P., and Longchamp, R. Auto-tuning of feedforward friction compensation based on the gradient method. In Proceedings of the American Control Conference, Chicago, Illinois, 2000, pp. 2600–2604.
    32. Bartolini, G. and Punta, E. Chattering elimination with second-order sliding modes robust to Coulomb friction. Trans. ASME, J. Dynamic Syst., Measmt, and Control, 2000, 122(4), 679–686.

    QR CODE
    :::