跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林秋萍
Qeo-Ping Lin
論文名稱: 最大餘震發生時間之統計分析
指導教授: 陳玉英
Yuh-Ing Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 89
語文別: 中文
論文頁數: 80
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 題之一。本文主要探討主震與最大餘震發生時間差T1 之分布,
    並且研究其與相關資料之關係,其中相關資料如主震規模
    (M0)、主震發生之震源深度(depth)及修正Omori 模式中的參
    數p 值。本文引用日本、紐西蘭、台灣及希臘等四個地區之歷史
    餘震序列資料,分析各地區T1 之機率分布,並探討此三者變數
    (M0、p 值,與depth)對於T1 的影響,藉以了解各地區最大餘
    震發生時間與其主震特性及餘震衰退率的關係。最後評估並討論
    不同地區之最大餘震發生時間之風險。


    第一章 緒論......................1 第二章 地震相關知識與文獻回顧............ 4 2.1 地震相關知識...................4 2.2 修正Omori 模式................. 7 2.3 最大餘震發生時間之機率模型........... 9 2.4 最大餘震發生時間與其他變數的關係....... 12 2.5 p 值之估計................... 14 第三章 各地區之實例分析............... 17 3.1 日本地區.................... 18 3.2 紐西蘭地區................... 24 3.3 台灣地區.................... 30 3.4 希臘地區.................... 37 3.5 比較與探討................... 43 第四章 結論..................... 48 參考文獻....................... 49 附錄 圖表...................... 53

    [1] Anderson, H. and Webb, T. (1994), “New Zealand Seismicity:
    Patterns Revealed by the Upgraded National Seismograph
    Network,” New Zealand Journal of Geology and Geophysics, 37,
    477-493.
    [2] Carter, J. A. and Berg, E. (1981), “Relative Stress Variation as
    Determined by b-Values From Earthquakes in Circum-Pacific
    Subduction Zones,” Tectonophysics, 76, 257-271.
    [3] Drakatos, G. (2000), “Relative Seismic Quiescence Before Large
    Aftershocks,” Pure and Applied Geophysics, 157, 1407-1421.
    [4] Drakatos, G., and Latoussakis, J. (1996), “Some Features of
    Aftershock Patterns in Greece,” Geophysical Journal International,
    126, 123-134.
    [5] Eberhart-Phillips, D. (1998), “Aftershock Sequence Parameters in
    New Zealand,” Bulletin of the Seismological Society of America, 88,
    4, 1095-1097.
    [6] Guo, Z., and Ogata, Y. (1997), “Statistical Relations Between the
    Parameters of Aftershocks in Time, Space, and Magnitude,” Journal
    of Geophysical Research, 102, B2, 2857-2873.
    [7] Kagan, Y. and Knopoff, L. (1978), “Statistical Study of the
    Occurrence of Shallow Earthquakes,” Geophysical Journal of the
    Royal Astronomical Society, 55, 67-86.
    [8] Kisslinger, C. (1995), “Aftershocks and Fault-Zone Properties,”
    Advances in Geophysics, 38, 1-36.
    [9] Kisslinger, C., and Jones, L. M. (1991), “Properties of Aftershock
    Sequences in Southern California,” Journal of Geophysical
    Research, 96, B7, 11,947-11,958.
    最大餘震發生時間之統計分析 參考文獻
    50
    [10] Latoussakis, J., and Drakatos, G. (1994), “A Quantitative Study of
    Some Aftershock Sequences in Greece,” Pure and Applied
    Geophysics, 143, 4, 603-616.
    [11] Latoussakis, J., Stavrakakis, G., Drakopoulos, J., Papanastassiou, D.,
    and Drakatos, G. (1991), “Temporal Characteristics of Some
    Earthquake Sequences in Greece, ” Tectonophysics, 193, 299-310.
    [12] Ogata, Y. (1983), “Estimation of the Parameters in the Modified
    Omori Formula for Aftershock Frequencies by the Maximum
    Likelihood Procedure,” Journal of Physics of the earth, 31, 115-124.
    [13] Ogata, Y. (1988), “Statistical Models for Earthquake Occurrences
    and Residual Analysis for Point Processes,” Journal of the American
    Statistical Association, 83, 401, 9-27.
    [14] Ogata, Y. (1999), “Seismicity Analysis Through Point-Process
    Modeling: A Review,” Pure and Applied Geophysics, 155, 471-507.
    [15] Ogata, Y., and Shimazaki, K. (1984), “Transition From Aftershock to
    Normal Activity: The 1965 Rat Islands Earthquake Aftershock
    Sequence,” Bulletin of the Seismological Society of America, 74, 5,
    1757-1765.
    [16] Olsson, R. (1999), “An Estimation of the Maximum b-Value in the
    Gutenberg-Richter Relation,” Geodynamics, 27, 547-552.
    [17] Page, R. (1968), “Aftershocks and Microaftershocks of the Great
    Alaska Earthquake of 1964,” Bulletin of the Seismological Society of
    America, 58, 3, 1131-1168.
    [18] Rabinowitz, N., and Steinberg, D. M. (1998), “Aftershock Decay of
    Three Recent Strong Earthquakes in the Levant,” Bulletin of the
    Seismological Society of America, 88, 6, 1580-1587.
    [19] Reasenberg, P. A., and Jones, L. M. (1989), “Earthquake Hazard
    After a Mainshock in California,” Science, 243, 1173-1176.
    最大餘震發生時間之統計分析 參考文獻
    51
    [20] Reasenberg, P. A., and Jones, L. M. (1990), “California Aftershock
    Hazard Forecasts,” Science, 247, 345-346.
    [21] Reasenberg, P. A., and Jones, L. M. (1994), “Earthquake Aftershocks:
    Update,” Science, 265, 1251-1252.
    [22] Reasenberg, P. A., and Matthews, M. V. (1990), “California
    Aftershock Model Uncertainties,” Science, 247, 343-345.
    [23] Tsapanos, T. M. (1992), “Considerations on the Global Seismic
    Sequences: the Second and the Third Largest Aftershocks,”
    Geophysical Journal International, 111, 630-636.
    [24] Tsapanos, T. M., Karakaisis, G. F., Hatzidimitriou, P. M., and
    Scordilis, E. M. (1988), “On the Probability of the Time of
    Occurrence of the Largest Aftershock and of the Largest Foreshock
    in a Seismic Sequence,” Tectonophysics, 149, 117-180.
    [25] Utsu, T. (1961), “A Statistical Study on the Occurrence of
    Aftershocks,” The Geophysical Magazine, 30, 4, 521-605.
    [26] Utsu, T. (1969), “Aftershocks and Earthquake Statistics (É) —Some
    Parameters Which Characterize an Aftershock Sequence and Their
    Interrelation,” Journal of the Faculty of Science, Hokkaido
    University, Ser. VÉÉ, 3, 3, 129-195.
    [27] Utsu, T. (1970), “Aftershocks and Earthquake Statistics(ÉÉ)—Further
    Investigation of Aftershocks and Other Earthquake Sequences Based
    on a New Classification of Earthquake Sequences,” Journal of the
    Faculty of Science, Hokkaido University, Ser. VÉÉ (Geophysics), 3, 4,
    197-266.
    [28] Vere-Jones, D. (1995), “Forecasting Earthquakes and Earthquake
    Risk,” International Journal of Forecasting, 11, 503-538.
    [29] Wiemer, S., and Katsumata, K. (1999), “Spatial Variability of
    Seismicity Parameters in Aftershock Zones,” Journal of Geophysical
    Research, 104, B6, 13,135-13,151.
    最大餘震發生時間之統計分析 參考文獻
    52
    [30] 何佳珣(2000):花蓮地區地震資料之長時期相關性及時間—空
    間模型之可行性,國立中央大學統計研究所碩士論文。
    [31] 林志勳(1999):花蓮地區地震資料之經驗貝氏分析,國立中央
    大學統計研究所碩士論文。
    [32] 陳韋辰(2000):花蓮地區地震資料改變點之貝氏模型選擇,國
    立中央大學統計研究所碩士論文。
    [33] 盧裕鵬(2000):集集餘震之統計研究,國立中央大學統計研究
    所碩士論文。

    QR CODE
    :::