| 研究生: |
陳暉宇 Hui-Yu Chen |
|---|---|
| 論文名稱: |
次微米T型閘極氮化鎵毫米波功率電晶體 之製程與特性分析 Fabrication and Characterization of Submicron T-gate GaN Millimeter Wave Power Transistors |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 高電子遷移率電晶體 、氮化鋁銦鎵 、T型閘極 |
| 外文關鍵詞: | HEMTs, AlInGaN, T-gate |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究主題為使用成長於矽基板之氮化鋁銦鎵/氮化鎵異質結構磊晶片製作毫米波功率電晶體,並藉由電子束微影開發T 型閘極製程。論文中以TDUR-P015/ Dilute ZEP-A7 雙層光阻結構進行閘極足部與頭部的曝光,達到高穩定性與高良率的T 型閘極製程,並且透過熱回流製程進行閘極微縮,最終將閘極長度微縮至90 nm 以提升電流增益及高頻特性。另外,本論文亦探討具有不同厚度之氮化鎵表面披覆層結構對於高頻元件的影響,除了轉移與輸出特性曲線亦測量元件之暫態特性,並以X-射線繞射實驗分析元件特性與磊晶差排密度之關聯性。
本論文中製作的高電子遷移率電晶體在直流特性上,具有2 nm 和5 nm GaN cap 厚度元件於閘極長度140 nm 的電流密度分別為876.1 mA/mm 與999.6 mA/mm,而將閘極長度藉由熱回流製程微縮至90 nm 時,其電流密度分別可提升為1035 mA/mm 與1082 mA/mm,而對於不同GaN cap 厚度在元件上的影響,可發現GaN cap 為5 nm 時皆有較優異的特性,較厚的
GaN cap 可以更有效的分散閘極邊緣的電場以降低閘極漏電流,使元件開關比從106 提升至107。另外,以去嵌化小訊號量測具有2 nm 和5 nm GaNcap 厚度之元件,在閘極長度為90 nm 時fT/fmax 分為100.4/110.9 GHz 以及130.4/144.3 GHz,由於GaN cap 厚度的增加使得元件閘極電容下降,所以5 nm GaN cap 元件有較高的截止頻率。這些數據是國際上在相同閘極長度的元件上所獲得最佳的數據。元件的大訊號特性,是操作於Class AB 的狀態,分別在10 GHz 以及28 GHz 下進行量測,不同GaN cap 厚度的元件在10 GHz 時之PAE 為19.29/21.77 %,功率增益為17.22/16.74 dB;而在28 GHz 時之PAE 為17.15/12.38 %,功率增益則為11.31/ 11.43 dB。未來在元件截止狀態之漏電流改善後,大信號特性應可再提升。
This thesis deals with the fabrication and characterization of AlInGaN/GaN on-Si high electron mobility transistors (HEMTs) for millimeter-wave applications, and the development of a T-gate process by electron beam lithography. In this paper, the TDUR-P015/ Dilute ZEP-A7 double-layer photoresist structure is used to expose the gate foot and head to achieve a highstability and high-yield T-gate process. Moreover, the gate length is reduced to 90
nm through a thermal reflow process to enhance current gain and high-frequency characteristics. This thesis also discusses the influence of the GaN cap layer with different thicknesses on high-frequency devices. In addition to the transfer and output characteristic curves, the transient characteristics of the device are also measured, and the correlation with the dislocation density of epitaxy and device characteristics are analyzed by X-ray diffraction experiment.
The electrical characteristics of high electron mobility transistors with 2 and 5 nm GaN cap layer are investigated in this work. Devices with 140 nm gate length have a current density of 876.1 and 999.6 mA/mm, respectively. When the gate length was reduced to 90 nm by a thermal reflow process, the current density can be increased to 1035 and 1082 mA/mm, respectively. The device with an 5 nm GaN cap layer exhibits better DC characteristics than that with a 2 nm cap layer. This is attributed to the thicker GaN cap, which can more effectively disperse the electric field at the edge of gate and reduce the gate leakage current. The device on/off ratio was increased from 106 to 107. In addition, the de embedded small signal measurements show that for the 2-nm and 5-nm cap devices with a gate length of 90 nm, the fT/fmax are 100.4/110.9 GHz and 130.4/144.3 GHz, respectively. The higher cut-off frequency can be attributed to the reduction of gate capacitance of the 5-nm cap device. These results are among the best reported data for devices with the same gate length. The large signal performance of the devices was measured in the Class AB bias condition at 10 GHz and 28 GHz. the PAE for the 2/5-nm cap device is 19.29/21.77%, the power gain is 17.22/16.74 dB at 10 GHz. When operated at 28 GHz, the PAE is 17.15/12.38%, and the power gain is 11.31/11.43 dB, respectively. The large signal
performance can be further improved after reducing the off-state leakage current in the future.
[1] Stephen Oliver, Optimize a Power Scheme for these Transient Times, Sep 30, 2014
[2] O Ambacher, “Growth and applications of group III-nitrides,” J. Phys. D: Appl. Phys., vol. 31, pp. 2653-2710, 1998.
[3] Y. Uemoto, D. Shibata, M. Yanagihara, H. Ishida, h. Matsuo, S. Nagai, N. Batta, M. Li, T. Ueda, T. Tanaka, and D. Ueda, "8300V blocking voltage AlGaN/GaN power HFET with thick poly-AIN passivation," IEEE IEDM Tech. Digest, pp. 861-864, 2007.
[4] K. H. Chen, B. S. Kang, H. T. Wang, T. P. Lele, F. Ren, Y. L. Wang, C. Y. Chang, S. J. Pearton, D. M. Dennis, J. W. Johnson, P. Rajagopal, J. C. Roberts, E. L. Piner, and K. J. Linthicum, "c-erbB-2 sensing using AlGaN/GaN high electron mobility transistors for breast cancer detection," Appl. Phys. Lett., vol. 92, no. 19, 192103, May. 2008.
[5] F. Medjdoub, J. F. Carlin, M. Gonschorek, E. Feltin, M. A. Py, D. Ducatteau, C. Gaquiere, N. Grandjean, and E. Kohn, "Can InAIN/GaN be an alternative to high power/high temperature AlGaN/GaN devices?," IEEE IEDM Tech. Digest, 2006.
[6] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, "Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures," Journal of Applied Physics, Vol. 85, No. 6, pp. 3222-3233, 1999.
[7] Charu Gupta, Anshul Gupta, Anil K. Bansal and Abhisek Dixit, “Gate Topologies for Mitigation of Short Channel Effects in Highly Scaled AlGaN/GaN HEMTs”, IEEE EDSSC, 04 Dec. 2017
[8] Remziye Tülek, et al., “Comparison of the transport properties of high quality AlGaN/AlN/GaN and AlInN/ AlN/GaN two-dimensional electron gas heterostructures,” Journal of Applied Physics, vol. 105, no. 1, January 2009.
[9] M. Gonschorek, J.-F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, "High Electron Mobility Lattice-Matched AlInN/GaN Field-Effect Transistor Heterostructures," Applied physics letters, Vol. 89, 062106, 2006.
[10] N. Ketteniss, L. Rahimzadeh Khoshroo, M. Eickelkamp, M. Heuken, H. Kalisch, R. H Jansen and A. Vescan1, "Study on Quaternary AlInGaN/GaN HFETs Grown on Sapphire Substrates," Semiconductor Science and Technology, Vol. 25, 075013, 2010.
[11] K. Makiyama, S. Ozaki, T. Ohki, N. Okamoto, Y. Minoura, Y. Niida, Y. Kamada, K. Joshin, K. Watanabe and Y. Miyamoto, "Collapse-Free High Power InAlGaN/GaN-HEMT with 3 W/mm at 96 GHz," IEEE International Electron Devices Meeting, pp. 9.1.1-9.1.4, 2015.
[12] S. Dai, Y. Zhou, Y. Zhong, K. Zhang, G. Zhu, H. Gao, Q. Sun, T. Chen, and H. Yang, "High fT AlGa(In)N/GaN HEMTs Grown on Si with a Low Gate Leakage and a High On/Off Current Ratio," IEEE Electron Device Letters, Vol. 39, No. 4, pp. 576-579, 2018.
[13] Indraneel Sanyal , En-Shuo Lin, Yu-Chen Wan, Kun-Ming Chen, Po-Tsung Tu, Po-Chun Yeh, and Jen-Inn Chyi, “AlInGaN/GaN HEMTs With High Johnson’s Figure-of-Merit on Low Resistivity Silicon Substrate”, Journal of The Electron Devices Society, vol 9, pp. 130-136, 2021
[14] F. Lecourt, A. Agboton, N. Ketteniss, H. Behmenburg, N. Defrance, V. Hoel, H. Kalisch, A. Vescan, S. Member, M Heuken, and J. C. D. Jaeger, "Power Performance at 40 GHz on Quaternary Barrier InAlGaN/GaN HEMT," IEEE Electron Device Letters, Vol. 34, No. 8, pp. 978-980, 2013.
[15] Ezgi Dogmus, Riad Kabouche, Sylvie Lepilliet, Astrid Linge, Malek Zegaoui, Hichem Ben-Ammar, Marie-Pierre Chauvat, Pierre Ruterana, Piero Gamarra, Cédric Lacam, Maurice Tordjman, and Farid Medjdoub, “InAlGaN/GaN HEMTs at Cryogenic Temperatures,” Electronics, vol. 5, no. 4, pp. 31, Jun. 2016
[16] P. Murugapandiyan, A. Mohanbabu, V. R. Lakshmi, M. Wasim, and K. M. Sundaram, "Investigation of Quaternary Barrier InAlGaN/GaN/AlGaN Double-Heterojunction High-Electron-Mobility Transistors (HEMTs) for High-Speed and High-Power Applications," Journal of Electronic Materials, Vol. 49, pp. 524–529, 2020.
[17] N. Kaminski, and O. Hilt, "SiC and GaN devices - wide bandgap is not all the same," IET Circuit Device & Systems, Vol. 8, Iss. 3, pp. 227-236, 2014
[18] A. Krost and A. Dadgar, "GaN-Based Devices on Si," Physica Status Solidi (a), Vol. 194, No. 2, pp. 361-375, 2002.
[19] F. M. Mohammed, L. Wang, I. Adesida, and E. Piner, "The role of barrier layer on ohmic performance of Ti/Al-based contact metallizations on AlGaN/GaN heterostructures," J. Appl. Phys., vol. 100, no. 2, 023708, Jul. 2006.
[20] J. Yun, K. Choi, K. Mathur, V. Kuryatkov, B. Borisov, G. Kipshidze, S. Nikishin, and H. Temkin, "Low-resistance ohmic contacts to digital alloys of n-AlGaN/AlN," IEEE Electron Device Letter, vol. 27, no. 1, pp. 22-24, Jan. 2006.
[21] P. M. White, and R. M. Healy, "Improved Equivalent Circuit for Determination of MESFET and HEMT Parasitic Capacitances from Coldfet Measurements," IEEE microwave and guided wave letters, Vol. 3, No. 12, pp. 453-454, 1993
[22] Jing Lu, Yan Wang, Long Ma, and Zhiping Yu, "A New Small-Signal Modeling and Extraction Method in AlGaN/GaN HEMTs," Solid-State Electronics, Vol. 52, pp. 115-120, 2008.
[23] M. Berroth and R. Bosch, "Broad-Band Determination of the FET Small-Signal Equivalent Circuit," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, No. 7, pp. 891-895, 1990.
[24] M. T. Yang, P. P. C. Ho, Y. J. Wang, T. J. Yeh, and Y. T. Chia, "Broadband Small-Signal Model and Parameter Extraction for Deep Sub-Micron Mosfets Valid up to 110 GHz," IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 369-372, 2003.
[25] G. Crupi, D. Schreurs, A. Caddemi, I. Angelov, R. Liu, M. Germain, and W. D. Raedt, "Detailed Analysis of Parasitic Loading Effects on Power Performance of GaN-on-Silicon HEMTs," Solid-State Electronics, Vol. 53, Iss. 2, pp. 185-189, 2009.
[26] Geng-Yen Lee, Po-Tsung Tu, and Jen-Inn Chy, “Improving the off-state characteristics and dynamic on-resistance of AlInN/AlN/GaN HEMTs with a GaN cap layer”, Applied Physics Express, 8, 0641102, 2015
[27] M. Wang and K. J. Chen,"Kink Effect in AlGaN/GaN HEMTs Induced by Drain and Gate Pumping, " IEEE Electron Device Letters, Vol. 32, No. 4, pp. 482-484, 2011.
[28] M. A. KHAN, J. N. KUZNIA, M. S. SHUR, AND Q. C. CHEN, “Current/voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias,” Electronics Letters, vol. 30, no. 25, pp. 2175–2176, 1994.
[29] S. . BINARI, P. . KLEIN, AND T. . KAZIOR, “Trapping effects in GaN and SiC microwave FETs,” Proceedings of the IEEE, vol. 90, no. 6, pp. 1048–1058, Jun. 2002.
[30] W. S. Tan, P. A. Houston, P. J. Parbrook, D. A. Wood, G. Hill, and C. R. Whitehouse, “Gate leakage effects and breakdown voltage in metalorganic vapor phase epitaxy AlGaNÕGaN heterostructure field-effect transistors”, APPLIED PHYSICS LETTERS, Vol. 80, No. 17, 2002
[31] M.Wang and K. J. Chen, "Off-State Breakdown Characterization in AlGaN/GaN HEMT Using Drain Injection Technique," IEEE Transactions on Electron Devices, Vol. 57, No. 7, pp. 1492-1496, 2010.
[32] H. Jiang, X. Li, J. Wang, L. Zhu, H. Wang, J. Liu, M. Wang, M. Yu, W. Wu, Y. Zhou, and G. Dai, "Source-Drain Punch-Through Analysis of High Voltage Off-State AlGaN/GaN HEMT Breakdown," Journal of Physics: Conference Series 864, 012023, 2017.
[33] R. Wang, P. Saunier, X. Xing, C. Lian, X. Gao, S. Guo, G. Snider, P. Fay, D. Jena, and H. Xing, "Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs With 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance," IEEE Electron Device Letters, Vol. 31, No. 12, pp. 1383-1385, 2010.
[34] R. Wang, G. Li, J. Verma, B. S. Rodriguez, T. Fang, J. Guo, Z. Hu, O. Laboutin, Y. Cao, W. Johnson, G. Snider, P. Fay, D. Jena, and H. Xing, "220-GHz Quaternary Barrier InAlGaN/AlN/GaN HEMTs," IEEE Electron Device Letters, Vol. 32, No. 9, pp. 1215-1217, 2011.
[35] R. Wang, G. Li, G. Karbasian, J. Guo, B. Song, Y. Yue, Z. Hu, O. Laboutin, Y. Cao, W. Johnson, G. Snider, P. Fay, D. Jena, and H. G. Xing, "Quaternary Barrier InAlGaN HEMTs With fT/fmax of 230/300 GHz," IEEE Electron Device Letters, Vol. 34, No. 3, pp. 378-380, 2013.
[36] S. D. Nsele, L. Escotte, J. G. Tartarin, and S. Piotrowicz, "Noise Characteristics of AlInN/GaN HEMTs at Microwave Frequencies," International Conference on Noise and Fluctuations, pp. 1-4, 2013.
[37] S. Arulkumaran, K. Ranjan, G. I. Ng, C. M. Manoj Kumar, S. Vicknesh, S. B. Dolmanan, and S. Tripathy, "High-Frequency Microwave Noise Characteristics of InAlN/GaN High-Electron Mobility Transistors on Si (111) Substrate," IEEE Electron Device Letters, Vol. 35, No. 10, pp. 992-994, 2014.
[38] H. W. Then, L. A. Chow, S. Dasgupta, S. Gardner, M. Radosavljevic, V. R. Rao, S. H. Sung, G. Yang, R. S. Chau, "High-Performance Low-Leakage Enhancement-Mode High-K Dielectric GaN MOSHEMTs for Energy-Efficient, Compact Voltage Regulators and RF Power Amplifiers for Low-Power Mobile SoCs," 2015 Symposium on VLSI Technology, pp. T202-T203, 2015.
[39] C. W. Tsou, C. Y. Lin, Y. W. Lian, and S. S. H. Hsu, "101-GHz InAlN/GaN HEMTs on Silicon with High Johnson’s Figure-of-Merit," IEEE Transactions on Electron Devices, Vol. 62, No. 8, pp. 2675-2678, 2015.
[40] D. Marti, S. Tirelli, V. Teppati, L. Lugani, J. F. Carlin, M. Malinverni, N. Grandjean, and C. R. Bolognesi, "94-GHz Large-Signal Operation of AlInN/GaN High-Electron-Mobility Transistors on Silicon with Regrown Ohmic Contacts," IEEE Electron Device Letters, Vol. 36, No. 1, pp. 17-19, 2015.
[41] F. Medjdoub, N. Herbecq, A. Linge, and M. Zegaoui, " High frequency high breakdown voltage GaN transistors," IEEE International Electron Devices Meeting, pp. 9.2.1-9.2.4, 2015.
[42] P. D. Christy, Y. Katayama, A. Wakejima, and T. Egawa, "High fT and f MAX for 100 nm unpassivated rectangular gate AlGaN/GaN HEMT on high resistive silicon (111) substrate," Electronics Letters, Vol. 51, No. 17, pp. 1366-1368, 2015.
[43] H. Tingting, D. Shaobo, L. Yuanjie, G. Guodong, S. Xubo, W. Yuangang, X. Peng, and F. Zhihong, "70-nm-gated InAlN/GaN HEMTs grown on SiC substrate with fT/fmax >160GHz," Journal of Semiconductors, Vol. 37, No. 2, pp. 024007(1-4), 2016.
[44] J. S. Moon, R. Grabar, M. Antcliffe, H. Fung, Y. Tang, and H. Tai, "High-Speed FP GaN HEMT with f T /f MAX of 95/200 GHz," Electronics Letters, Vol. 54, Iss. 10, pp. 657-659, 2018.
[45] L. Li, K. Nomoto, M. Pan, W. Li, A. Hickman, J. Miller, K. Lee, Z. Hu, S. J. Bader, S. M. Lee, J. C. M. Hwang, D. Jena, and H. G. Xing, "GaN HEMTs on Si with Regrown Contacts and Cutoff/Maximum Oscillation Frequencies of 250/204 GHz," IEEE Electron Device Letters, Vol. 41, No. 5, pp. 689-692, 2020.
[46] S. C. Binari, et al., "Trapping effects and microwave power performance in AlGaN/GaN HEMTs," IEEE Transactions on Electron Devices, vol. 48, pp. 465-471, 2001.
[47] R. Yeats, et al., "Gate slow transients in GaAs MESFETs—Causes, cures, and impact on circuits," Technical Digest., International Electron Devices Meeting, pp. 842–845, 1988.
[48] J. C. Huang, et al., "An AlGaAs/InGaAs pseudomorphic high electron mobility transistor with improved breakdown voltage for Xand Ku-band power applications," IEEE transactions on microwave theory and techniques, vol. 41, pp. 752-759, 1993.
[49] O. Jardel, O. Jardel, F. D. Groote, T. Reveyrand, J. C. Jacquet, C. Charbonniaud, J. P. Teyssier, D. Floriot, and R. Quéré, "An Electrothermal Model for AlGaN/GaN Power HEMTs Including Trapping Effects to Improve Large-Signal Simulation Results on High VSWR," IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, pp. 2660-2669, 2007.