| 研究生: |
喬琳 Lynn Chiao |
|---|---|
| 論文名稱: | Predictive Models for Employee Voluntary Turnover: An Empirical Study of a Manufacturing Company in Taiwan |
| 指導教授: |
鄭晉昌
Jihn-Chang Jehng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 人力資源管理研究所 Graduate Institute of Human Resource Management |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 機器學習 、人員自願性離職 、特徵選取 、預測模型 、監督式分類 |
| 外文關鍵詞: | Machine learning, Employee voluntary turnover, Feature selection, Predictive model, Supervised classification |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以台灣某製造業公司的人員資料進行分析,使用羅吉斯迴歸、支持向量機、決策樹、隨機森林和極限梯度提升這五種監督式機器學習演算法,建立人員自願性離職的預測模型。除此之外,研究同時探討不平衡資料、特徵選取與K-摺疊交叉驗證的處理技術。結果顯示,隨機森林與極限梯度提升的預測表現最佳,兩個模型的F分數與AUC值均達0.85以上,代表模型有良好的鑑別度,能有效預測人員是否會選擇離職。透過分析變數重要性,研究發現人員的年齡、年資、初階管理訓練時數、專業訓練時數與平均晉升次數皆是用來判斷人員是否會選擇離職的主要依據。
關鍵詞:機器學習、人員自願性離職、特徵選取、預測模型、監督式分類
This study collects data from a manufacturing company in Taiwan. Logistic regression, support vector machine, decision tree, random forest, and eXtreme Gradient Boosting algorithms are adopted in order to build a reliable predictive model to predict employee voluntary turnover. Moreover, imbalanced classification problem, feature selection and K-fold cross validation are introduced and tested in this study. The results suggest random forest and eXtreme Gradient Boosting perform the best, both predictive models have the F-Score and AUC values above 0.85. Results of variable importance show elementary level of managerial training hours, professional training hours, average number of promotions, job tenure, and age contribute the most in predicting employee voluntary turnover outcome.
Keywords: Machine learning, Employee voluntary turnover, Feature selection, Predictive model, Supervised classification
Alam, M. M., Mohiuddin, K., Islam, M. K., Hassan, M., Hoque, M. A. U., & Allayear, S. M. (2018). A machine learning approach to analyze and reduce features to a significant number for employee’s turn over prediction model. In Arai, K., Kapoor, S., & Bhatia, R. (Eds.), Intelligent Computing (pp. 142-159). Springer. https://doi.org/10.1007/978-3-030-01177-2_11.
Alao, D., & Adeyemo, A. (2013). Analyzing employee attrition using decision tree algorithms. Computing Information Systems & Development Informatics and Allied Research Journal, 4(1), 17-28.
Ayodele, T. O. (2010). New advances in machine learning. In Zhang,Y. (Ed.), Self-regulated learning and academic achievement (pp. 19-48). IntechOpen. https://doi.org/10.5772/9385.
Boehmke, B., & Greenwell, B. M. (2019). Gradient boosting. Hands-On Machine Learning with R (pp.238). Chapman and Hall/CRC. https://doi.org/10.1201/9780367816377.
Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B (Methodological), 20(2), 215-242. https://doi.org/10.1111/j.2517-6161.1958.tb00292.x.
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953.
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Paper presented at the Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. pp. 785–794. https://doi.org/10.1145/2939672.2939785.
Choi, Y., & Dickson, D. R. (2009). A case study into the benefits of management training programs: Impacts on hotel employee turnover and satisfaction level. Journal of Human Resources in Hospitality & Tourism, 9(1), 103-116.
Chourey, A., Phulre, S., & Mishra, S. (2019). Employee attrition prediction using various machine learning techniques. The International Journal of Analytical and Experimental Modal Analysis, 11(11), 2718-2724.
Development Dimensions International, The Conference Board, & Ernst & Young. (2018). Global leadership forecast 2018: 25 research insights to fuel your people strategy. Retrieved from: https://www.ey.com/Publication/vwLUAssets/ey-the-global-leadership-forecast/$FILE/ey-the-global-leadership-forecast.pdf.
Elyusufi, Y., Elyusufi, Z., M'hamed, A.K. (2001). Social networks fake profiles detection using machine learning algorithms. In Ben Ahmed, M., Boudhir, A.A., Santos, D., El Aroussi, M., Karas, I.R. (Eds.), Innovations in Smart Cities Applications Edition 3: Proceedings of the 4th International Conference on Smart City Applications (pp. 34). Springer. https://doi.org/10.1007/978-3-030-37629-1_3.
Feldman, D. C. (1994). The decision to retire early: A review and conceptualization. Academy of Management Review, 19(2), 285-311. https://doi.org/10.2307/258706
He, H., & Ma, Y. (2013). Imbalanced learning: foundations, algorithms, and applications: John Wiley & Sons. https://doi.org/10.1002/9781118646106.
Hong, W. C., & Chao, R. M. (2007). A comparative test of two employee turnover. International Journal of Management, 24(2), 21-229.
Lambert, E. G., Hogan, N. L., & Altheimer, I. (2010). An exploratory examination of the consequences of burnout in terms of life satisfaction, turnover intent, and absenteeism among private correctional staff. The Prison Journal, 90(1), 94-114. https://doi.org/10.1177/0032885509357586.
Lee, T. W., Mitchell, T. R., Sablynski, C. J., Burton, J. P., & Holtom, B. C. (2004). The effects of job embeddedness on organizational citizenship, job performance, volitional absences, and voluntary turnover. Academy of Management Journal, 47(5), 711–722. https://doi.org/10.2307/20159613.
Nyberg, A. (2010). Retaining your high performers: Moderators of the performance–job satisfaction–voluntary turnover relationship. Journal of Applied Psychology, 95(3), 440-453. https://doi.org/10.1037/a0018869.
Peng, C. Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression analysis and reporting. The journal of Educational Research, 96(1), 3-14. https://doi.org/10.1080/00220670209598786.
Punnoose, R., & Ajit, P. (2016). Prediction of employee turnover in organizations using machine learning algorithms. International Journal of Advanced Research in Artificial Intelligence, 5(9), 22-26. https://doi.org/ 10.14569/IJARAI.2016.050904.
Price, J., & Mueller, C. (1986). Absenteeism and turnover among hospital employees. Greenwich, CT: JAI Press.
Quinlan, J. R. (1996). Learning decision tree classifiers. ACM Computing Surveys (CSUR), 28(1), 71-72. https://doi.org/10.1145/234313.234346.
Quinn, A., Rycraft, J. R., & Schoech, D. (2002). Building a model to predict caseworker and supervisor turnover using a neural network and logistic regression. Journal of Technology in Human Services, 19(4), 65-85. https://doi.org/10.1300/J017v19v04_05.
Reinsel, D., Gantz, J., & Rydning, J. (2018). The digitization of the world from edge to core ( IDC #US44413318). Retrieved from Seagate Technology website: https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf.
Salamin, A., & Hom, P. W. (2005). In search of the elusive u-shaped performance–turnover relationship: Are high-performing Swiss bankers more liable to quit? Journal of Applied Psychology, 90(6),1204–1216. https://doi.org/10.1037/0021-9010.90.6.1204.
Saradhi, V. V., & Palshikar, G. K. (2011). Employee churn prediction. Expert Systems with Applications, 38(3), 1999-2006. https://doi.org/ 10.1016/j.eswa.2010.07.134.
Shaw, J. D., Gupta, N., & Delery, J. E. (2005). Alternative conceptualizations of the relationship between voluntary turnover and organizational performance. Academy of Management Journal, 48(1), 50-68. https://doi.org/10.5465/AMJ.2005.15993112.
Staw, B. M. (1980). The consequences of turnover. Journal of Occupational Behaviour, 1, 253-273. https://doi.org/10.2307/3000143.
Trevor, C. O., Gerhart, B., & Boudreau, J. W. (1997). Voluntary turnover and job performance: Curvilinearity and the moderating influences of salary growth and promotions. Journal of Applied Psychology, 82, 44–61. https://doi.org/10.1037/0021-9010.82.1.44.
Van den Heuvel, S., & Bondarouk, T. (2016). The rise (and fall) of HR analytics: A study into the future application, value, structure, and system support. Paper presented at the 2nd HR Division International Conference (HRIC), Sydney, Australia. https://doi.org/10.1108/JOEPP-03-2017-0022
Yiğit, İ. O., & Shourabizadeh, H. (2017). An approach for predicting employee churn by using data mining. 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Turkey: Malatya. https://doi.org/10.1109/IDAP.2017.8090324.