| 研究生: |
林育薇 Yu-Wei Lin |
|---|---|
| 論文名稱: |
整合參數模型與網格模型重建複雜建築結構物 Integrating parametric and mesh models for complicated building structures |
| 指導教授: |
蔡富安
Fuan Tsai |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 複雜房屋模型重建 、參數式模型 、網格模型 、整合模型 、精緻度層級 |
| 外文關鍵詞: | Complex Building Model Reconstruction, Parametric Model, Mesh Model, Hybrid Model, Level of Detail |
| 相關次數: | 點閱:29 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,三維房屋模型已普遍運用於都市規劃、環境與景觀模擬、3D導航、災害防治模擬,以及建築文化遺址的保存…等。尤其對文化遺產而言,有效的應用三維建物資訊,快速並確切展示結構物特色,以提升文化研究與管理維護,為目前的重要課題。建置模型時,有幾種常用的表示法,如:線框骨架、參數、網格模型…等,使用參數式模型能有效地描述最簡易的結構類型;反之,網格模型能詳細地呈現出複雜建物的細節。因此,本研究提出了一個兩階段由粗略到細緻的策略,整合兩種模型的優點,藉由高解析影像點雲資料,建置三維複雜建築結構或考古遺址,以降低資料儲存空間並保有結構物的細節。
整體流程利用數位單眼相機(DSLR)取得目標物之原始影像資料,以運動回復結構(SFM)演算法生成三維點雲。經雜訊濾除後,點雲藉由群組化分類萃取基本幾何參數,配合複雜度計算,將複雜度較低之點雲建置成參數式模型,而複雜度高的點雲以波以松比表面重建成網格模型。整合參數模型與網格模型為本研究的核心目標,共分為三大步驟。首先,偵測網格模型接合面之邊界點,利用其方向向量作為網格模型的邊界條件。將邊界點逐一投影至預接合之參數表面上生成虛擬點,連接邊界點與虛擬點,於預整合空間中形成一轉換面,最後建置成整合模型。本研究測試一組歷史性建物,測試區鄰近中央大學校區。於成果階段將展示整合模型並對於其效能進行分析討論,再透過所開發之整合模型細緻度層級(LOD),呈現不同精緻度之複雜建築物。
Nowadays, three dimensional (3D) building model has been widely used in urban planning, landscape simulation, 3D navigation, disaster prevention simulation and preservation of architectural heritage sites. Especially for cultural heritage, applying 3D building information effectively and representing the characteristics of structures fast and accurately are important tasks to enhance cultural research and promote the maintenance of management. There are several representations commonly used for building models such as wire frame, parametric, mesh models, and so on. An effective approach is to use parameterized models describing the most common building types. In addition, another common approach to represent buildings is using meshes. Meshes or triangulated local adaptive meshes can be used to describe complex objects in detail. Accordingly, this research proposes a two-step, coarse-to-fine strategy to create three-dimensional models of complicated architectural structures or archeological sites based on point clouds data. The proposed approach creates a sparse model first and then the fine geometric details will be added gradually.
In this study, digital single-lens reflex (DSLR) camera is used to collect the original image data of targets. Then, 3D point clouds are generated from these images using Structure from Motion (SFM) algorithms. Parameters for constructing parametric models are identified from the point clouds. Moreover, Poisson surface reconstruction is carried out to generate mesh models. The integration of parametric and mesh models is the major subsequent task in this research, which includes three steps. Firstly, detect boundary points for connecting parameter models and mesh models. Next, generate a new junction on the pre-integrated surfaces of the parameter models. Finally, a new mesh model is generated in the pre-integrated space. The result demonstrates a hybrid model of complicated buildings with different Levels of Details (LOD).
Amenta, N., & Bern, M. (1999). Surface reconstruction by Voronoi filtering. Discrete & Computational Geometry, 22(4), 481-504.
Baillard, C., Schmid, C., Zisserman, A., & Fitzgibbon, A. (1999, September). Automatic line matching and 3D reconstruction of buildings from multiple views.
Baltsavias, E. P. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal of photogrammetry and Remote Sensing, 54(2-3), 83-94.
Detchev, I., Habib, A., & Rau, J. Y. (2011). Image matching for 3D photogrammetric reconstruction. In 32nd Asian Conference on Remote Sensing 2011, ACRS 2011 (pp. 247-252).
Dick, A. R., Torr, P. H., Ruffle, S. J., & Cipolla, R. (2001, July). Combining single view recognition and multiple view stereo for architectural scenes. In Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001 (Vol. 1, pp. 268-274). IEEE.
Filin, S. (2002). Surface clustering from airborne laser scanning data. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/A), 119-124.
Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-395.
Frueh, C., Jain, S., & Zakhor, A. (2005). Data processing algorithms for generating textured 3D building facade meshes from laser scans and camera images. International Journal of Computer Vision, 61(2), 159-184.
Gröger, G., Kolbe, T. H., Czerwinski, A., & Nagel, C. (2008). OpenGIS city geography markup language (CityGML) encoding standard, version 1.0.0.
Gross, H., Thoennessen, U., & Hansen, W. V. (2005). 3D modeling of urban structures. International Archives of Photogrammetry and Remote Sensing, 36(Part 3), W24.
Haala, N., & Brenner, C. (1999). Extraction of buildings and trees in urban environments. Isprs journal of photogrammetry and remote sensing, 54(2-3), 130-137.
Hough, P. V. (1962). U.S. Patent No. 3,069,654. Washington, DC: U.S. Patent and Trademark Office.
Kazhdan, M., Bolitho, M., & Hoppe, H. (2006, June). Poisson surface reconstruction. In Proceedings of the fourth Eurographics symposium on Geometry processing (Vol. 7).
Khoshelham, K. (2005). Region refinement and parametric reconstruction of building roofs by integration of image and height data. Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci, 36, 3-8.
Kuo, C. C., & Yau, H. T. (2005). A Delaunay-based region-growing approach to surface reconstruction from unorganized points. Computer-Aided Design, 37(8), 825-835.
Lee, D. S., Shan, J., & Bethel, J. S. (2003). Class-guided building extraction from Ikonos imagery. Photogrammetric Engineering & Remote Sensing, 69(2), 143-150.
Ohtake, Y., Belyaev, A., Alexa, M., Turk, G., & Seidel, H. P. (2003). Multi-level partition of unity implicits (Vol. 22, No. 3, pp. 463-470). ACM.
Overby, J., Bodum, L., Kjems, E., & Iisoe, P. M. (2004). Automatic 3D building reconstruction from airborne laser scanning and cadastral data using Hough transform. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 34(Part B3), 296-301.
Pauly, M., Gross, M., & Kobbelt, L. P. (2002, October). Efficient simplification of point-sampled surfaces. In Proceedings of the conference on Visualization'02 (pp. 163-170). IEEE Computer Society.
Pollefeys, M., Nistér, D., Frahm, J. M., Akbarzadeh, A., Mordohai, P., Clipp, B., ... & Salmi, C. (2008). Detailed real-time urban 3d reconstruction from video. International Journal of Computer Vision, 78(2-3), 143-167.
Rabbani, T., & Van Den Heuvel, F. (2005). Efficient hough transform for automatic detection of cylinders in point clouds. Isprs Wg Iii/3, Iii/4, 3, 60-65.
Remondino, F., & Rizzi, A. (2010). Reality-based 3D documentation of natural and cultural heritage sites—techniques, problems, and examples. Applied Geomatics, 2(3), 85-100.
Schindler, K., & Bauer, J. (2003, October). A model-based method for building reconstruction. In First IEEE International Workshop on Higher-Level Knowledge in 3D Modeling and Motion Analysis, 2003. HLK 2003. (pp. 74-82). IEEE.
Schnabel, R., Wahl, R., & Klein, R. (2007, June). Efficient RANSAC for point‐cloud shape detection. In Computer graphics forum (Vol. 26, No. 2, pp. 214-226). Oxford, UK: Blackwell Publishing Ltd.
Stewart, N., Leach, G., & John, S. (1998, August). An improved z-buffer CSG rendering algorithm. In Workshop on Graphics Hardware (pp. 25-30).
Stoll, C., Karni, Z., Rössl, C., Yamauchi, H., & Seidel, H. P. (2006, July). Template Deformation for Point Cloud Fitting. In SPBG (pp. 27-35).
Suveg, I., & Vosselman, G. (2004). Reconstruction of 3D building models from aerial images and maps. ISPRS Journal of Photogrammetry and remote sensing, 58(3-4), 202-224.
Taillandier, F., & Deriche, R. (2004, July). Automatic buildings reconstruction from aerial images: a generic bayesian framework. In Proceedings of the XXth ISPRS Congress, Istanbul, Turkey (pp. 12-23).
Tarsha-Kurdi, F., Landes, T., & Grussenmeyer, P. (2007, September). Hough-transform and extended ransac algorithms for automatic detection of 3d building roof planes from lidar data. In ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007 (Vol. 36, pp. 407-412).
Timoshenko, S. P., & Woinowsky-Krieger, S. (1959). Theory of plates and shells. McGraw-hill.
Tseng, Y. H., & Wang, S. (2003). Semiautomated building extraction based on CSG model-image fitting. Photogrammetric Engineering & Remote Sensing, 69(2), 171-180.
Vosselman, G., Gorte, B. G., Sithole, G., & Rabbani, T. (2004). Recognising structure in laser scanner point clouds. International archives of photogrammetry, remote sensing and spatial information sciences, 46(8), 33-38.
Xu, X. (2009). Integrating Advanced Computer-Aided Design, Manufacturing, and Numerical Control. Information Science Reference.
王聖鐸, & 曾義星. (2007). 以浮測模型理論萃取三維空間資訊-以建物重建為例. Journal of Photogrammetry and Remote Sensing, 12(4), 489-507.
李唐宇. (2007). 結合多元資料重建三維房屋模型. 中央大學土木工程學系學位論文, 1-98.
林宛蓉. (2009). 多層次精緻度三維房屋模型之建置. 中央大學土木工程學系學位論文, 1-89.
邱煥智. (2008). 區塊式 LOD 網格細化於大型地形視覺模擬之應用. 中央大學土木工程學系學位論文, 1-102.
洪祥恩. (2011). 以地面及空載光達點雲重建複雜物三維模型. 中央大學土木工程學系學位論文, 1-105.
徐業良. (2005). 設計幾何模型的建構. Retrieved from http://designer.mech.yzu.edu.tw/article/articles/course/file/(2004-05-24)
張智安, & 陳良健. (2009). 整合空載光達點雲與地形圖模塑房屋之分治策略. Journal of Photogrammetry and Remote Sensing, 14(2), 83-94.
陳俊元. (2008). 智慧型基因演算法及差分坐標應用於點雲鄰近點計算. 成功大學測量及空間資訊學系學位論文, 1-67.
劉濠雄. (2007). 漸變式多重解析度於大型地景視覺模擬之應用. 中央大學土木工程學系學位論文, 1-77.
賴泓瑞, 陳俊元, & 林昭宏. (2010). 以模型樣版為基礎之建物三維點雲建模演算法. Journal of Photogrammetry and Remote Sensing, 15(2), 189-199.
羅英哲. (2008). 從光達點雲資料重建面特徵. 成功大學測量及空間資訊學系學位論文, 1-87.