跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃紳語
Shen-Yu Huang
論文名稱: 缺陷懸浮單層石墨烯的力學性能
Mechanical properties of defected suspended single layer graphene
指導教授: 溫偉源
Wei-Yen Woon
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 68
中文關鍵詞: 懸浮石墨烯臨界點乾燥缺陷機械性質
外文關鍵詞: suspended graphene, CPD, defect, mechanical properties
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇研究中,化學氣相沉積所生長的單層石墨烯用來探討點缺陷對於楊氏模數的關係。我們通過臨界點乾燥機克服了從銅片上的石墨烯轉移至有洞矽基板上的過程中產生的表面張力破壞懸浮石墨烯的問題,因此大面積的懸浮石墨烯可以穩定的製造。原子力顯微鏡的奈米壓痕技術用來量測力和位移的關係圖,並且點缺陷可以通過離子佈植機精準地控制所需的劑量,並透過拉曼光譜去判定石墨烯的損傷程度。透過楊氏模數趨勢的改變我們將點缺陷對於機械性質的影響分成了兩類,一開始楊氏模數會隨著缺陷的增加而增加直到缺陷和缺陷間的距離到達 10nm,之後楊氏模數會隨著缺陷的上升而下降呈現負相關,我們將機制分類為熱波動和石墨烯的結構完整性,並在本篇文章中討論兩種機制對於楊氏模數所帶來的影響。


    The research used chemical vapor deposition (CVD) growth graphene to explore the mechanism of the defect to Young’s modulus correlation. The graphene on the copper foil could be transferred to the substrate with holes by a critical point dryer (CPD) without surface tension at the removing polymethylmethacrylate (PMMA) step. Through the CPD method, the large area (5μm) of single-layer suspending graphene could be easily produced. The nanoindentation of the atomic force microscope(AFM) is used to measure the force to the displacement correlation. The doses of defects are precisely controlled through ion implantation (IMP) and the degree of damage could be measured by the micro Raman spectrum. Through the trend of Young’s modulus to defect density, there are two mechanisms to effect. In the beginning, the trend of Young’s modulus to the defect density is increasing until the defect length reaches 10nm. After that, the trend presents a decline. The mechanisms are classified as thermal fluctuation and the completion of the graphene structure and discussed in this article

    Content Content iii Figure list v Chapter 1 Introduction 1 Chapter 2 Background 3 2.1.1 Graphene 3 1.2 Defect type of graphene 11 2.2 Atomic force microscope 15 2.1 Contact mode 17 2.2 Nanoindentation 18 2.3 Spring constant of the cantilever 19 2.3 Raman spectroscopy 20 2.4 Ion implantation 26 Chapter 3 Experiment 3.1 Sample preparation 28 1.1 CVD growth graphene 28 1.2 Graphene transfer 30 3.2 Micro Raman spectroscopy 33 3.3 Atomic force microscope 35 3.3.2 Spring constant of the cantilever 39 3.4 Ion implanter 41 Chapter 4 Result and Discussion 43 Chapter 5 Conclusion 54 Reference 55

    Reference
    1. Lin, Y.-P. Functionalization of two-dimensional nanomaterials based on graphene. Aix
    Marseille Université, 2014.
    2. Malard, L.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M., Raman
    spectroscopy in graphene. Physics reports 2009, 473 (5-6), 51-87.
    3. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.;
    Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano letters 2008, 8
    (3), 902-907.
    4. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the elastic properties and
    intrinsic strength of monolayer graphene. science 2008, 321 (5887), 385-388.
    5. Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim,
    P.; Stormer, H. L., Ultrahigh electron mobility in suspended graphene. Solid state
    communications 2008, 146 (9-10), 351-355.
    6. Bunch, J. S.; Van Der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum,
    D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L., Electromechanical resonators
    from graphene sheets. Science 2007, 315 (5811), 490-493.
    7. Smith, A.; Niklaus, F.; Paussa, A.; Vaziri, S.; Fischer, A. C.; Sterner, M.;
    Forsberg, F.; Delin, A.; Esseni, D.; Palestri, P., Electromechanical piezoresistive sensing
    in suspended graphene membranes. Nano letters 2013, 13 (7), 3237-3242.
    8. Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; Van Der Zande, A. M.; Parpia, J. M.;
    Craighead, H. G.; McEuen, P. L., Impermeable atomic membranes from graphene sheets.
    Nano letters 2008, 8 (8), 2458-2462.
    9. Zhong, T.; Li, J.; Zhang, K., A molecular dynamics study of Young’s modulus of
    multilayer graphene. Journal of Applied Physics 2019, 125 (17), 175110.
    10. Falin, A.; Cai, Q.; Santos, E. J.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.;
    Huang, S.; Watanabe, K.; Taniguchi, T., Mechanical properties of atomically thin boron
    nitride and the role of interlayer interactions. Nature communications 2017, 8 (1), 1-9.
    11. López-Polín, G.; Gómez-Navarro, C.; Parente, V.; Guinea, F.; Katsnelson,
    Mikhail I.; Pérez-Murano, F.; Gómez-Herrero, J., Increasing the elastic modulus of
    graphene by controlled defect creation. Nature Physics 2015, 11 (1), 26-31.
    12. Lopez-Polin, G.; Gomez-Navarro, C.; Gomez-Herrero, J., The effect of rippling on the
    mechanical properties of graphene. Nano Materials Science 2022, 4 (1), 18-26.
    13. Ogawa, S.; Fukushima, S.; Shimatani, M., Graphene plasmonics in sensor
    applications: a review. Sensors 2020, 20 (12), 3563.
    14. Yang, G.; Li, L.; Lee, W. B.; Ng, M. C., Structure of graphene and its disorders: a
    review. Science and technology of advanced materials 2018, 19 (1), 613-648.
    15. Roldán, R.; Fasolino, A.; Zakharchenko, K. V.; Katsnelson, M. I., Suppression of
    anharmonicities in crystalline membranes by external strain. Physical Review B 2011, 83
    (17), 174104.
    16. Braghin, F.; Hasselmann, N., Thermal fluctuations of free-standing graphene. Physical
    Review B 2010, 82 (3), 035407.
    17. Compagnini, G.; Giannazzo, F.; Sonde, S.; Raineri, V.; Rimini, E., Ion irradiation
    and defect formation in single layer graphene. Carbon 2009, 47 (14), 3201-3207.
    18. Wang, W.; Wu, X.; Zhang, J., Graphene and other 2D material components dynamic
    characterization and nanofabrication at atomic scale. Journal of Nanomaterials 2015,
    2015.
    19. Lehtinen, O.; Kotakoski, J.; Krasheninnikov, A.; Keinonen, J., Cutting and
    controlled modification of graphene with ion beams. Nanotechnology 2011, 22 (17),
    175306.
    20. Merindol, R. Assemblage couche-par-couche de nano-composites bio-inspirés.
    Université de Strasbourg, 2014.
    21. Agius Anastasi, A., Nanoindentation of graphene membranes using atomic force
    microscopy and molecular dynamics simulations. 2021.
    22. Jorio, A.; Dresselhaus, M. S.; Saito, R.; Dresselhaus, G., Raman spectroscopy in
    graphene related systems. John Wiley & Sons: 2011.
    23. Pimenta, M.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L.; Jorio, A.; Saito,
    R., Studying disorder in graphite-based systems by Raman spectroscopy. Physical
    chemistry chemical physics 2007, 9 (11), 1276-1290.
    24. Thomsen, C.; Reich, S., Double resonant Raman scattering in graphite. Physical review
    letters 2000, 85 (24), 5214.
    25. Saito, R.; Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M.;
    Pimenta, M. A., Probing phonon dispersion relations of graphite by double resonance
    Raman scattering. Physical review letters 2001, 88 (2), 027401.
    26. Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.;
    Capaz, R. B.; Achete, C. A.; Jorio, A., Quantifying ion-induced defects and Raman
    relaxation length in graphene. Carbon 2010, 48 (5), 1592-1597.
    27. Poggi, M. A.; McFarland, A. W.; Colton, J. S.; Bottomley, L. A., A method for
    calculating the spring constant of atomic force microscopy cantilevers with a
    nonrectangular cross section. Analytical chemistry 2005, 77 (4), 1192-1195.
    28. Lübbe, J.; Doering, L.; Reichling, M., Precise determination of force microscopy
    cantilever stiffness from dimensions and eigenfrequencies. Measurement Science and
    Technology 2012, 23 (4), 045401.
    29. Wortman, J.; Evans, R., Young's modulus, shear modulus, and Poisson's ratio in silicon
    and germanium. Journal of applied physics 1965, 36 (1), 153-156.
    30. Sha, Z.; Wan, Q.; Pei, Q.; Quek, S.; Liu, Z.; Zhang, Y.; Shenoy, V., On the
    failure load and mechanism of polycrystalline graphene by nanoindentation. Scientific
    reports 2014, 4 (1), 1-6

    QR CODE
    :::