| 研究生: |
伍韻安 Yun-An Wu |
|---|---|
| 論文名稱: |
利用CT影像分析台灣西部濱海地區砂岩水力參數尺度效應 Use CT images to assess the scale effect and variations of hydraulic parameters of sandstone samples in western coastal area of Taiwan |
| 指導教授: |
倪春發
Chuen-Fa Ni |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | X光電腦斷層掃描 、孔隙尺度 、影像處理 、水力參數 |
| 外文關鍵詞: | X-ray CT, pore scale, image processing, hydraulic parameters |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
X光電腦斷層掃描技術(X-ray CT)的發展有助於岩石內部微觀構造的觀察,藉由CT影像可以非破壞性的方式取得岩石的重要物理特性如孔隙率、滲透率、曲折度等。本研究使用影像解析度為2微米(μm)的砂岩試體CT影像,試體取自彰濱觀測井(TPCS-M1)2409 m深度處(桂竹林層魚藤坪砂岩段)與2531 m深度處(觀音山砂岩),量化該區域岩石孔隙率與滲透率的尺度效應。本研究使用Avizo軟體進行CT影像處理,包含影像濾波、影像二值化,影像切割,研究內容分為三大部份:第一部份為以孔隙尺度分析岩石的孔隙率與滲透率空間分布,試體滲透率為使用Kozeny-Carman方程式計算而得,結果指出使用CT影像分析之砂岩樣本平均孔隙率約為24.5%,平均滲透率約為5E-14 m²,此方法較與高圍壓試驗結果相差了一至兩個數量級,原因本研究認為是Kozeny-Carman方程式中的參數設定與假設;第二部份為評估兼顧掃描成本與影像品質之最佳掃描解析度,影像解析度須達16 μm以上,CT影像才較適合做孔隙分析;第三部份為分析樣本之水力擴散係數,本研究改變分析之單位體積,結果指出在單位體積最小為100 μm時,水力擴散係數亦會不同,具有尺度效應。
The technologies of X-ray CT have improved the understanding of geological microstructures, including micro fractures, tortuosity, porosity, permeability, and other important features in rocks. This study aims to quantify the scale effect involved in a relatively homogeneous sandstone rock sample in Kueichulin Formation Yutengping Sandstone (2409 m depth) and Kuanyinshan Sandstone (2531 m depth) in western Taiwan. The variations of sampling volumes are assessed based on 2 μm resolution CT images. The commercial software Avizo is used to do the image processing, which is an important step, including image filtering, binarization and extraction. There are three parts in this study. First, the spatial distribution of porosity and permeability are estimated in the pore scale. The permeability is estimated by the Kozeny-Carman equation. The results show that the average porosity is 24.5% and the average permeability is 5E-14 m², which are one to two order lower than the confining pressure test. Second, in order to do the pore analysis , the best scanning image resolution should be higher than 16 μm. Third, this study analyze the hydraulic diffusivity of sample. The unit volume size is changed into different size. The results show that even when the unit volume size is 100 μm, the hydraulic diffusivity is even different in different size, the scale effect exists.
[1] 呂明達、宣大衡、黃雲津、范政暉,「台灣陸上二氧化碳地質封存潛能 評估」,礦冶,52,154-161頁,2008年
[2] Kozeny J, "Uber kapillare leitung der wasser in boden.", Royal Academy of Science, Vienna, Proc Class I., Vol 136, pp. 271-306, 1927.
[3] Carman PC, "Flow of gases through porous media. Academic press", 1956.
[4] Scheidegger AE, "The physics of flow through porous media", 1974.
[5] Odong J., "Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis.", Journal of American Science, Vol 3 , pp. 54-60, 2007.
[6] Xu P, B Yu., "Developing a new form of permeability and Kozeny–Carman constant for homogeneous porous media by means of fractal geometry.", Advances in Water Resources, Vol 31, pp. 74-81, 2008.
[7] Kalam Z, T Al Dayyani, A Clark, S Roth, C Nardi, O Lopez, et al., "Case study in validating capillary pressure curves, relative permeability and resistivity index of carbonates from X-ray micro tomography images.", Oral presentation of paper SCA2010-02 given at the International Symposium of the Society of Core Analysts, Halifax, Nova Scotia, Canada, pp. 4-7, 2010.
[8] Kalam MZ., Digital rock physics for fast and accurate special core analysis in carbonates., New Technologies in the Oil and Gas Industry, InTech, 2012.
[9] Werth CJ, C Zhang, ML Brusseau, M Oostrom, T Baumann., "A review of non-invasive imaging methods and applications in contaminant hydrogeology research.", Journal of Contaminant Hydrology, Vol 113, pp. 1-24, 2010.
[10] Wang F, Y Li, X Tang, J Chen, W Gao., "Petrophysical properties analysis of a carbonate reservoir with natural fractures and vugs using X-ray computed tomography.", Journal of Natural Gas Science and Engineering, Vol 28, pp. 215-225 ,2016.
[11] 楊盛博,「利用深井岩心探討岩性及構造作用對碎屑沉積岩孔隙率和滲透率之影響」,國立中央大學應用地質研究所,碩士論文,2015年
[12] McGregor R., "The effect of rate of flow on rate of dyeing II–the mechanism of fluid flow through textiles and its significance in dyeing.", Coloration Technology, Vol 81, pp. 429-438, 1965.
[13] Coussy O, B Zinszner., Acoustics of porous media, Editions Technip, 1987.
[14] Panda MN, LW Lake., "Estimation of single-phase permeability from parameters of particle-size distribution", AAPG bulletin, Vol 78, pp. 1028-1039, 1994.
[15] Shih CH, LJ Lee., "Effect of fiber architecture on permeability in liquid composite molding", Polymer Composites, Vol 19, pp. 626-630, 1998
[16] Rodriguez E, F Giacomelli, A Vazquez., "Permeability-porosity relationship in RTM for different fiberglass and natural reinforcements", Journal of composite materials, Vol 38, pp.259-268, 2004.
[17] Koponen A, M Kataja, J Timonen., "Permeability and effective porosity of porous media", Physical Review E, Vol 56, pp. 3319, 1997.
[18] Mavko G, A Nur., "The effect of a percolation threshold in the Kozeny-Carman relation", Geophysics, Vol 62, pp.1480-1482, 1997.
[19] Bayles GA, GE Klinzing, SH Chiang., "Fractal mathematics applied to flow in porous systems", Particle & Particle Systems Characterization, Vol 6, pp.168-175, 1989.
[20] Pape H, C Clauser, J Iffland., Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore space model, Fractals and dynamic systems in geoscience, pp. 603-619, Springer, 2000.
[21] Civan F., "Scale effect on porosity and permeability: Kinetics, model, and correlation", AIChE journal, Vol 47, pp. 271-287, 2001.
[22] Costa A., "Permeability‐porosity relationship: A reexamination of the Kozeny‐Carman equation based on a fractal pore‐space geometry assumption", Geophysical research letters, Vol 33, 2006.
[23] Sutera SP, R Skalak., "The history of Poiseuille's law", Annual Review of Fluid Mechanics, Vol 25, pp. 1-20, 1993.
[24] Millington RJ, JP Quirk., "Permeability of porous solids", Transactions of the Faraday Society, Vol 57, pp.1200-1207, 1961.
[25] Ghanbarian B, AG Hunt, RP Ewing, M Sahimi., "Tortuosity in porous media: a critical review", Soil science society of America journal, Vol 77, pp. 1461-1477, 2013.
[26] Gvirtzman H, S Gorelick., "Dispersion and advection in unsaturated porous media enhanced by anion exclusion", Nature, Vol 352, pp.793, 1991.
[27] Farber L, G Tardos, JN Michaels., "Use of X-ray tomography to study the porosity and morphology of granules", Powder Technology, Vol 132, pp.57-63, 2003.
[28] Coenen J, E Tchouparova, X Jing., "Measurement parameters and resolution aspects of micro X-ray tomography for advanced core analysis", proceedings of International Symposium of the Society of Core Analysts, 2004.
[29] Cnudde V, MN Boone., "High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications", Earth-Science Reviews, Vol 123, pp. 1-17, 2013.
[30] Zhu W, J Liu, D Elsworth, A Polak, A Grader, J Sheng, et al., "Tracer transport in a fractured chalk: X-ray CT characterization and digital-image-based (DIB) simulation", Transport in Porous Media, Vol 70, pp.25-42, 2007.
[31] Shih T-C, J-H Chen, D Liu, K Nie, L Sun, M Lin, et al., "Computational simulation of breast compression based on segmented breast and fibroglandular tissues on magnetic resonance images", Physics in Medicine & Biology, Vol 55, pp. 4153, 2010.
[32] Xiang-Jun L, Z Hong-Lin, L Li-Xi., "Digital rock physics of sandstone based on micro-CT technology", Chinese Journal of Geophysics-Chinese Edition, Vol 57, pp.1133-1140, 2014.
[33] Bird M, SL Butler, C Hawkes, T Kotzer., "Numerical modeling of fluid and electrical currents through geometries based on synchrotron X-ray tomographic images of reservoir rocks using Avizo and COMSOL.", Computers & Geosciences, Vol 73, pp.6-16, 2014.
[34] Grathoff GH, M Peltz, F Enzmann, S Kaufhold., "Porosity and permeability determination of organic-rich Posidonia shales based on 3-D analyses by FIB-SEM microscopy", Solid Earth, Vol 7, pp. 1145-1146, 2016.
[35] McElrone AJ, B Choat, DY Parkinson, AA MacDowell, CR Brodersen., "Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature", Journal of visualized experiments: JoVE, Issue 74, 2013
[36] Westenberger P., "AVIZO-3D visualization framework.", Geoinformatics Conference, pp.1-11, 2008.
[37] Lin A, A Watts, S Hesselbo., "Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region, Basin Research, Vol 15, pp.453-478, 2003.
[38] Schwartz FW, H Zhang., "Fundamentals of Groundwater John Wiley & Sons", New York, Vol 583, 2003.
[39] 林秀俊、董家鈞、俞旗文、楊盛博、戴秉倫,「利用岩心之孔隙率與滲透率量測結果推算孔隙率與滲透率隨深度之變化」,中華民國地質學會與中華民國地球物理學會107年年會暨學術研討會,國立中正大學,嘉義縣,2018年5月