跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李冠威
Kuan-Wei Lee
論文名稱: 使用即時中子繞射方式分析疲勞裂縫生長之殘餘應變及應力變化
Using In-situ Neutron Diffraction to Investigate the Residual Strain/Stress Distribution during Fatigue-crack Propagation
指導教授: 黃爾文
E-wen Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 100
語文別: 英文
論文頁數: 65
中文關鍵詞: 中子繞射即時疲勞
外文關鍵詞: In-situ, Neutron Diffraction, Fatigue
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正確地探討材料因往復循環應力而造成變形及破壞是重要的,傳統上皆利用疲勞試驗中裂縫生長的長度、裂縫生長速度以及應力循環周期數作為預測。然而試片遭受較大拉伸應力或較大壓縮應力後,裂縫生長速度會產生減速或者加速的現象,其現象與機制已被廣泛的發現及探討,然而至今並無一完整的理論可對於此議題作完整且正確的描述。而中子由於具有高穿透性、不帶電、與原子核而非電子進行交互作用以及具有磁矩的性質,近二十年來已成為研究工程材料性質的一重要的工具,其中中子繞射在分析材料微結構性質變化應用相當廣泛。
    本實驗利用中子繞射的方式探討疲勞試驗中,在不同施加應力條件下﹝一般疲勞狀況、施加一較大拉伸應力﹞,疲勞裂縫尖端其殘餘應變及應力的分布,調查裂縫生長速率變化的可能因素。並且,量測三個軸向﹝裂縫生長方向、施力方向、厚度方向﹞的應力應變分布,有利於提供傳統上利用有限元素法模擬的實際實驗結果。此外,利用中子繞射最大的優勢,即利用及時量測的方式,分析當材料承受一拉伸應力狀態下,其應力及應變隨著施加應力的大小以及分布變化。


    To discuss the deformation and fracture characteristics around the crack tip accurately is of importance to elucidate the fatigue crack growth mechanism and to further develop the life prediction methodology. The overload during constant-amplitude fatigue crack growth result in the retardation in the crack-growth rate, making it difficult to predict the crack-propagation behavior and fatigue lifetime. Although there have been numerous investigations to account for these transient crack growth behavior, the phenomena are still not understood precisely. Neutron diffraction measurements were employed to investigate these transient crack-growth mechanisms; which help us to gain a thorough understanding of the crack-tip deformation and fracture behaviors under applied loads; and to establish a quantitative relationship between the crack-tip-driving force and crack-growth behavior. In the recent study, a fatigue crack under constant-amplitude cyclic loading is studied on a 304L stainless steel compact-tension specimen. Neutron diffraction is employed to measure the distribution of three-orthogonal-direction strain fields directly with 1-mm3 spatial resolution as a function of distance from the crack tip. The mapping results provide insights into the fatigue crack tip which indicate the through-thickness direction residual-strain distributions around the crack tip are abnormal plane strain-like behavior which was observed at the mid-thickness position. Hence, the residual-strain distribution would be orientation dependent. Furthermore, in-situ measurements give the internal-strain evolution during the loading condition, the tensile/compressive strains transitions are also shown in this study.

    Abstract 1 摘要 2 1 Chapter 1 Introduction 3 1.1 Background 3 1.2 Scientific Issues 6 1.3 Objectives 6 2 Chapter 2 Experiments 8 2.1 Materials 8 2.2 Fatigue-crack-growth Experiments 10 2.2.1 Alternating Current Potential Drop 13 2.2.2 Crack Opening Displacement 14 2.2.3 Optical Microscopy (OM) Experiment 15 2.3 Neutron-Diffraction Experiments 17 2.3.1 Experimental Setup 17 2.3.2 Neutron Diffraction Data Analyses 23 2.3.3 Thickness effect Measurements 24 2.3.4 Lattice Strain Mapping during in-situ loading 26 3 Chapter 3 Results and Discussion 29 3.1 Residual Strain/Stress Distribution around a Crack Tip under Variable-Amplitude Fatigue-Loading Conditions 29 3.2 Thickness Effect on Residual Strain/Stress Distribution 36 3.3 Internal Strain Evolutions with Increasing Applied Load 40 3.4 Plastic Zone Size Estimation 47 4 Chapter 4 Conclusion 52 6 Chapter 5 Future Work 55 Reference 56

    ASTM Standard E647-99: Standard Test Method for Measurement of Fatigue Crack-Growth Raters.
    Almer, J., J. Cohen, et al. (1998). "The effects of residual macrostresses and microstresses on fatigue crack propagation." Metallurgical and Materials Transactions A 29(8): 2127-2136.
    Barabash, R. (2001). "X-ray and neutron scattering by different dislocation ensembles." Materials Science and Engineering: A 309–310(0): 49-54.
    Bichler, C. and R. Pippan (2007). "Effect of single overloads in ductile metals: A reconsideration." Engineering Fracture Mechanics 74(8): 1344-1359.
    Borrego, L. P., J. M. Ferreira, et al. (2003). "Evaluation of overload effects on fatigue crack growth and closure." Engineering Fracture Mechanics 70(11): 1379-1397.
    Bragg, W. H. and W. L. Bragg (1913). "The Reflection of X-rays by Crystals." Proceedings of the Royal Society of London. Series A 88(605): 428-438.
    Codrington, J. and A. Kotousov (2009). "Crack growth retardation following the application of an overload cycle using a strip-yield model." Engineering Fracture Mechanics 76(11): 1667-1682.
    Croft, M., N. Jisrawi, et al. (2012). "Fatigue crack growth “overload effect”: mechanistic insights from in-situ synchrotron measurements." The Journal of Strain Analysis for Engineering Design 47(2): 83-94.
    Elber, W. (1971). "The significance of crack closure." ASTM STP 486: 230-242.
    Irwin, G. R. (1957). "Analysis of stresses and strains near the end of a crack traversing a plate." J. Appl. Mech 24: 361-364.
    Lee, S. Y., R. I. Barabash, et al. (2008). "Neutron and X-ray Microbeam Diffraction Studies around a Fatigue-Crack Tip after Overload." Metallurgical and Materials Transactions A 39(13): 3164-3169.
    Ltd, M. "ACPD Crack Growth Monitor TYPE CGM7 INSTRUCTION MANUAL."
    M. T. Hutchings, P. J. W., T. M. Holden, T. Lorentzen, (2005). Introduction to the characterization of residual stress by neutron diffraction. New York, Taylor and Francis Press.
    Meyers, M. and K. Chawla (2009). Mechanical Behavior of Materials, Cambridge University Press.
    Mughrabi, H. (1983). "Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals." Acta Metallurgica 31(9): 1367-1379.
    Paris, P. and F. Erdogan (1963). "A Critical Analysis of Crack Propagation Laws." Journal of Basic Engineering 85(4): 528-533.
    S.Suresh (1998). Fatigue of Materials, Cambridge University Press.
    Sadananda, K., A. K. Vasudevan, et al. (1999). "Analysis of overload effects and related phenomena." International Journal of Fatigue 21(1001): 233-246.
    Saxena, A. and S. J. Hudak (1978). "Review and extension of compliance information for common crack growth specimens." International Journal of Fracture 14(5): 453-468.
    Singh, K. D., K. H. Khor, et al. (2006). "Roughness- and plasticity-induced fatigue crack closure under single overloads: Finite element modelling." Acta Materialia 54(17): 4393-4403.
    Steuwer, A., M. Rahman, et al. (2010). "The evolution of crack-tip stresses during a fatigue overload event." Acta Materialia 58(11): 4039-4052.
    Ungar, T., H. Biermann, et al. (1993). "Dislocation distributions as seen by X-ray line profiles." Materials Science and Engineering: A 164(1–2): 175-179.
    Wang, X.-L. (2006). "The application of neutron diffraction to engineering problems." JOM Journal of the Minerals, Metals and Materials Society 58(3): 52-57.
    Wheeler, O. E. (1972). "Spectrum loading and crack growth." J. Basic Eng. 94(1): 181-186.
    Withers, P. J. (2007). "Residual stress and its role in failure." Reports on Progress in Physics 70(12): 2211.
    Withers, P. J., H. Dai, et al. (2011). Overload effects on local fatigue crack-tip strain fields in plane stress samples. Giornata IGF Forni di Sopra (UD) 2011. Forni di Sopra.
    Zhang, X., A. S. L. Chan, et al. (1992). "Numerical simulation of fatigue crack growth under complex loading sequences." Engineering Fracture Mechanics 42(2): 305-321.

    QR CODE
    :::