| 研究生: |
鄭春皇 Chun-Huang Cheng |
|---|---|
| 論文名稱: |
鋁金屬誘發多晶矽之研究 The research of polycrystalline silicon prepared by aluminum induced crystallization |
| 指導教授: |
李正中
Cheng-Chung Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 鋁金屬誘發結晶 、熱電阻蒸鍍 、射頻磁控濺鍍 、電子槍蒸鍍 、低溫多晶矽 |
| 外文關鍵詞: | low temperature polycrystalline silicon, aluminum-induced crystallization, resistive heator, RF magnetron sputtering, e-beam evaporation |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,低溫多晶矽(LTPS)引起了很多人的關注。本研究旨在探討電子槍蒸鍍非晶矽膜層與射頻磁控濺鍍非晶矽膜層不同的膜質結構對鋁金屬誘發結晶矽製程的影響。首先在室溫下,利用熱電阻蒸鍍系統將鋁金屬蒸鍍到玻璃基板上,再利用電子槍蒸鍍系統或射頻濺鍍系統將非晶矽鍍到玻璃基板上,以形成glass/Al/a-Si的樣品結構,之後再使用高溫爐將樣品做熱退火處理,分別討論不同熱退火溫度與時間對矽薄膜結晶的影響。
實驗中發現,在相同的熱退火時間12小時下,電子槍蒸鍍非晶矽製程熱退火溫度(500℃以上)要比射頻磁控濺鍍非晶矽製程熱退火溫度(400℃以上)高,才會有較明顯的矽結晶現象,主要結晶晶向皆為(111)。而在相同的熱退火溫度550℃下,電子槍蒸鍍非晶矽製程熱退火時間(30分鐘以上)要比射頻磁控濺鍍非晶矽製程熱退火時間(10分鐘以上)長,才會有較明顯的矽結晶現象。
In recent years, low temperature polycrystalline silicon(LTPS) attracted much attention. In this work, we investigated the effect of different silicon deposition techniques, including e-beam evaporation and RF magnetron sputtering during the process of aluminum-induced crystallization(AIC) of a-Si. First, Al layers were deposited on glass substrates at room temperature by the resistive heator. Then a-Si layers were deposited on Al layers by e-beam evaporation or RF magnetron sputtering to make glass/Al/a-Si samples. The samples were annealed in a furnace and analyzed how different annealing temperature and time influenced a-Si crystallization.
The results revealed that under the same annealing time (12 hours), the procedure of a-Si prepared by e-beam evaporation(>500℃) had higher annealing temperature than the procedure of a-Si prepared by RF magnetron sputtering(>400℃) to make crystalline silicon which had preferred orientation(111). Furthermore, at the same annealing temperature(550℃), the procedure of a-Si prepared by e-beam evaporation(>30 min) had longer annealing time than the procedure of a-Si prepared by RF magnetron sputtering(>10min) to make crystalline silicon.
1. S. O. Kasap,“Pinciple of Electrical Engineering Materials and Devices
,” 2nd ed., McGraw-Hill Company, New York, USA,2002.
2. M. Balkanski and R. F. Wallis, “Semiconductor Physics and Applications
,” Oxford University Press Inc., New York, USA,2000.
3. P. G. Lecomber, W. E. Spear, and A. Ghaith, “Amorphous-Silicon Field
-Effect Device and Possible Application,” Electronics Letters, Vol. 15, No. 6, pp. 179-181, March, 1979.
4. Z. Shengdong, Z. Chunxiang, J. K. O. Sin, J. N. Li, and P. K. T. Mok, “Ultra-thin elevated channel poly-Si TFT technology for fully-integrated AMLCD system on glass”, IEEE Trans. Electron Devices, 47, 569 (2000).
5. N. Kubo, N. Kusumoto, T. Inushima, and S. Yamazaki, “Characterization of polycrystalline-Si thin film transistors fabricated by excimer laser annealing method,” IEEE Trans. Electron Devices, 40, 1876 (1994).
6. G. K. Giust and T. W. Sigmon, “High-performance thin-film transistors fabricated using excimer laser processing and grain engineering”, IEEE Trans. Electron Devices, 43, 561 (1996).
7. M. Cao, S. Talwar, K. J. Kramer, T. W. Sigmon, and K. C. Saraswat, “A high-performance polysilicon thin-film transistor using XeCl excimer laser crystallization of pre-patterned amorphous Si films”, IEEE Trans. Electron Devices, 43, 561 (1996).
8. O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature”, Appl. Phys. Lett. 73, 3214 (1998).
9. K. Andrade and J. Jang, “Gold Induced Crystallization of Amorphous
Silicon”, Journal of the Korean Physical Society, 39, 376 (2001).
10. Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films”, J. Appl. Phys. 84, 194 (1998).
11. S. W. Lee, Y. C. Jeon, and S. K. Joo, “Pd induced lateral crystallization of amorphous Si thin films”, Appl. Phys. Lett. 66, 1671 (1995).
12. S. Iwanari and K. Takayanagi,“Surfactant epitaxy of Si on Si(111) mediated by Sn”,Jpn. J. Appl. Phys. 30,L 1978(1991).
13. G. D. Wilk, R. E. Martinez, John F. Chervinsky, Frans Spaepen, and J. A. Golovchenko,“Low-temperature homoepitaxial growth on Si(111) mediated by thin overlayers of Au”,Appl. Phys. Lett. 65, 866(1994).
14. T. K. Kim, G. B. Kim, Y. G. Yoon, C. H. Kim, B. I. Lee, and S. K. Joo,“Scanning rapid thermal annealing process for poly silicon thin film transistor”, Jpn. J. Appl. Phys. 39, 5773(2000).
15. A. Khakifirooz*, S. Haji, and S. Shamsoddin Mohajerzadeh, “UV-assisted nickel-induced crystallization of amorphous silicon ”,Thin Solid Films, 383, 241(2001).
16. H. Kim, D. Kim, G. Lee, D. Kim, and S. H. Lee,“Polycrystalline Si films formed by Al-induced crystallization(AIC) with and without Al oxides at Al/a-Si interface”,Solar Energy Materials & Solar Cells, 74, 323(2002).
17. D. Dimova-Malinovska, O. Angelov, M. Sendova-Vassileva, V. Grigorov, and J. C. Pivin,“Polycrystalline Si films on glass substrates prepared by metal induced crystallization”, IEEE 27th int. Spring Seminar On Electronics Technology, 530(2004).
18. H. Makihara, A. Tabata, Y. Suzuoki, and T. Mizutani,“Effect of the hydrogen partial pressure ratio on the properties of μc-Si:H films prepared by rf magnetron sputtering”,Vacuum, 59, 785(2000).
19. 李正中,“薄膜光學與鍍膜技術”,台北, 藝軒圖書出版社(第四版), 2004.