跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳柏同
Po-tung Chen
論文名稱: 高比表面積活性炭之合成及儲氫的應用
Syntheses of activated carbons with high surface area and their applications in hydrogen storage
指導教授: 蔣孝澈
A.S.T. Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 90
中文關鍵詞: 高比表面積活性炭合成應用儲氫
外文關鍵詞: hydrogen storage, applications, syntheses, high surface area, activated carbons
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以蔗糖為碳源材料,經水熱碳化步驟成為初步碳化材料,或是藉由絕氧煅燒提高碳化程度。接著用此含碳材料當作成為活化前驅物,與KOH活化劑混合後進行高溫化學活化,經清洗乾燥後得到高比表面積活性炭。
    為了研究影響高比表面積活性炭的氣體吸附現象之成因,我們進行一系列的儀器分析。使用SEM觀察添加氨水後合成的水熱產物之粒子大小和形貌,使用FTIR鑑定材料內部的化學官能基成分,使用粉末XRD鑑定材料的石墨化程度和孔洞結構,最後用恆溫氮氣吸附儀測量比表面積、孔洞結構和常壓氫氣吸附量。
    經過上述研究後發現,我們製備的含氮活性炭ACL1A8K4除了具有比表面積3500 m2/g,還有豐富的石墨層狀結構以及大規模的微孔洞結構,是未來在各個領域應用的良好材料。


    Activated carbons with high specific surface area were prepared with sucrose as the starting materials. Sucrose was first converted to carbonaceous materials by the hydrothermal carbonization process (175 ℃, 14 hrs), followed by an optional dry carbonization at 450 ℃ (or 600 ℃) in dry nitrogen. The carbonized products were then chemically activated using KOH as the activator. The mixtures of Carbon precursor/KOH at different ratios were heated in dry nitrogen at high temperatures (800 ℃ or 900 ℃). The activation product was then washed with acid to give the final high surface area activated carbon (HSA ACs).
    A series of analyses was made on the so produced HSA ACs. The particle shapes and sizes of the hydrothermal products were studied by SEM. The surface functional groups were characterized by FTIR analysis. The extent of carbonization and the carbon structure was studied with powder X-ray diffraction (PXRD). The specific surface areas and pore structure was determined from the 77K nitrogen adsorption isotherm. Finally, the possibility of room hydrogen storage was tested by measuring the hydrogen adsorption isotherms below 100 KPa and at room temperature using the volumetric method.
    In general, the above procedure could produce HAS ACs with BET area above 2000 m2/g. In particular, the addition of ammonia during the hydrothermal carbonization step produced a nitrogen containing activated carbon with BET surface area as high as 3500 m2/g. The sample also exhibits substantial graphite layer structure and wormhole type nanostructures. The hydrogen adsorption isotherms indicate some of our samples were as good as, if not better, than commercial products such as AX-21 and Maxsorb in both BET areas and hydrogen adsorption capacity.

    第一章 序論.....................................................................3 第二章 文獻回顧 2-1 活性炭的構造及分類....................................................3 2-2 活性炭的製備..............................................................6 2-3 活化前驅物的種類.......................................................8 2-4 化學活化法製備活性炭................................................11 2-5 之前實驗室的作法(Former preparation by our lab).......15 2-6 活性炭的氫氣吸附能力................................................16 第三章 高比表面積活性炭的製備與氫氣吸附 3.1 實驗目的及作法..........................................................19 3.2 實驗藥品....................................................................20 3.3 實驗步驟....................................................................20 3.3.1 水熱碳化(Hydrothermal carbonization)......................23 3.3.2 絕氧碳化(Carbonization)...........................................26 3.3.3 高溫活化(Activation)................................................28 3.3.4 活性炭清洗(Washing)................................................31 3.3.5 乾燥(Drying)............................................................32 3.3.6 活性炭摻雜鉑金屬(Dopant activated carbons).............33 3.4 儀器分析與使用條件...................................................35 3.4.1 常溫氫氣吸附(恆溫吸附 by H)...............................35 3.4.2 恆溫氮氣吸附(恆溫吸附 by N)................................35 2 3.4.3 傅利葉紅外線光譜儀(FTIR).......................................36 3.4.4 掃瞄式電子顯微鏡(SEM)...........................................37 3.4.5 粉末X-光繞射儀(Powder XRD)...................................38 第四章 結果與討論 4-1 添加氮源(nitrogen source)對於活化前驅物的影響.........40 4-1-1 蔗糖添加碳酸氫銨或是氨水的水熱產物......................40 4-1-2 含氮(nitrogen content)的活性炭材料.........................42 4-2 粒子小的活化前驅物之活化效果..................................48 4-3 碳化製程對活性炭的影響............................................51 4-3-1 碳化時間的影響.......................................................51 4-3-2 碳化溫度的影響.......................................................53 4-4 活化製程對活性炭的影響............................................55 4-4-1 活化劑比例..............................................................55 4-4-2 活化溫度..................................................................57 4-5 清洗步驟對於孔洞活化的影響......................................59 4-6 活性炭的結晶構造......................................................62 4-6-1 活性炭材料的石墨化程度..........................................63 4-6-2 大量微孔洞的形成....................................................63 4-7 活性炭的氫氣吸附......................................................67 4-7-1 未摻雜鉑金屬之活性炭................................................67 4-7-1 摻雜鉑金屬之活性炭...................................................69 第五章 結論與建議.............................71 參考文獻........................................73

    參考文獻
    Reference
    1. Yang, Y. X., Singh, R. K., and Webley, P. A. (2008) Adsorption-Journal of the International Adsorption Society 14, 265-274
    2. Cabrera-Sanfelix, P. and Darling, G. R. (2007) Journal of Physical Chemistry C 111, 18258-18263
    3. Gardner, L., Kruk, A., and Jaroniec, M. (2001) Journal of Physical Chemistry B 105, 12516-12523
    4. Setoyama, N., Suzuki, T., and Kaneko, K. (1998) Carbon 36, 1459-1467
    5. Wennerberg, A. N. and O''Grady, T. M. (1978) Active carbon process and composition. In Standard Oil Company (Indiana), C., editor. U.S.
    6. Wang, H. L., Gao, Q. M., and Hu, J. (2009) Journal of the American Chemical Society 131, 7016-7022
    7. Takeuchi, Y., Hino, M., Yoshimura, Y., Otowa, T., Izuhara, H., and Nojima, T. (1999) Separation and Purification Technology 15, 79-90
    8. Lozano-Castello, D., Lillo-Rodenas, M. A., Cazorla-Amoros, D., and Linares-Solano, A. (2001) Carbon 39, 741-749
    9. Silvestre-Albero, A., Ramos-Fernandez, J. M., Martinez-Escandell, M., Sepulveda-Escribano, A., Silvestre-Albero, J., and Rodriguez-Reinoso, F. (2010) Carbon 48, 548-556
    10. Teng, H. S. and Hsu, L. Y. (1999) Industrial & Engineering Chemistry Research 38, 2947-2953
    11. Qiao, W. M., Ling, L. C., Zha, Q. F., and Liu, L. (1997) Journal of Materials Science 32, 4447-4453
    12. Zabaniotou, A., Stavropoulos, G., and Skoulou, V. (2008) Bioresource Technology 99, 320-326
    13. Balathanigaimani, M. S., Shim, W. G., Kim, C., Lee, J. W., and Moon, H. (2009) Surface and Interface Analysis 41, 484-488
    14. Lu, A. H. and Zheng, J. T. (2001) Journal of Colloid and Interface Science 236, 369-374
    15. Wang, H. Q., Zhong, Y. L., Li, Q. Y., Yang, J. H., and Dai, Q. F. (2008) Journal of Physics and Chemistry of Solids 69, 2420-2425
    16. Choi, M. and Ryoo, R. (2007) Journal of Materials Chemistry 17, 4204-4209
    17. Titirici, M. M., Thomas, A., and Antonietti, M. (2007) New Journal of Chemistry 31, 787-789
    18. Wang, Q., Li, H., Chen, L. Q., and Huang, X. J. (2001) Carbon 39, 2211-2214
    19. Wang, Q., Li, H., Chen, L. Q., and Huang, X. J. (2002) Solid State Ionics 152, 43-50
    20. Sun, X. M. and Li, Y. D. (2004) Angewandte Chemie-International Edition 43, 597-601
    21. Cui, X. J., Antonietti, M., and Yu, S. H. (2006) Small 2, 756-759
    22. Hsu, C.-H. (2009) M.S. thesis.
    23. Li, Y. W. and Yang, R. T. (2007) Journal of Physical Chemistry C 111, 11086-11094
    24. Li, Y. and Yang, R. T. (2006) Journal of the American Chemical Society 128, 8136-8137
    25. Chen, H. and Yang, R. T. (2010) Langmuir
    26. Otowa, T., Tanibata, R., and Itoh, M. (1993) Gas Separation & Purification 7, 241-245

    QR CODE
    :::