| 研究生: |
杜孟奇 Mong-Qi Du |
|---|---|
| 論文名稱: |
應用RBF類神經網路於超音波馬達之位置控制 |
| 指導教授: |
莊漢東
Han-tung Chuang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 類神經網路 、非線性適應控制 、系統鑑別 、超音波馬達 |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超音波馬達系統驅動原理是利用壓電陶瓷因電壓而變形,進而產
生高頻振動來驅動轉子或滑塊來作動。因運動平台的慣性與滑軌的摩
擦力,造成此馬達有死區(Dead Zone 或Dead Band)問題,此為馬達最
明顯之非線性現象。為了解決此問題我們導入了類神經網路於此非線
性系統的鑑別上,首先將馬達系統的動態模型建構成由一個非線性
(死區)和一個線性系統兩部份所串連而成,再針對這種形態的系統模
型提出了藉由類神經網路訓練來鑑別其非線性部份之近似模型,再由
此死區近似模型配合類神經網路訓練出其逆模型(Inverse Model)來對
非線性部份做補償,最後再利用線性控制理論來控制系統線性部份。
這種控制方法的特色是類神經網路可以在架構不改變的前提下近似
出多種形態之非線性函數,而對於系統線性部份之控制器的設計也更
能以線性控制來完成。因為Radial Basis Function(RBF)網路在函數的
近似上有極佳的效果,所以在本研究中採用RBF 類神經網路來近似
馬達死區,而控制器設計是採用線性二次(Linear Quadratic, LQ)最佳
控制理論。經電腦模擬與實作皆可證明本研究可解決具有死區問題之
非線性系統,並精準的到達目標位置,完成超音波馬達之位置控制。
[1] T. Sashida and T. Kenjo, An Introduction to Ultrasonic
Motors, Oxford: Clarendon Press, 1993.
[2] S. Ueha, Y. Tomikawa, M. Kurosawa, and N. Nakamura,.
Ultrasonic Motors Theory and Applications,
Oxford:Clarendon Press, 1993.
[3] S. Segawa, T. Ushioda, and H. Inada, “Ultrasonic
Piezomotor Equipped with a Piezoelectric Rotary
Encoder,” IEEE Ultrasonics Symposium, Vol. 3, 1990.
[4] Nanomotion User Manual for the AB1, 1999.
[5] T. Senjyu, H. Miyazato, S. Yokoda, and K. Uezato,
“Speed Control of Ultrasonic Motors Using Neural
Network,” IEEE Transactions on Power Electronics, Vol.
13, No. 3, pp. 381-387, May 1998.
[6] Y. Izuno, R. Takeda, and M. Nakaoka, “New Fuzzy
Reasoning-based High-performance Speed/Position Servo
Control Schemes Incorporating Ultrasonic Motor,” IEEE
Transactions on Industry Applications, Vol. 28, No. 3,
May-June 1992.
[7] 許安仁, “自調式類神經PID 控制於超音波馬達之應用, ”
中央大學機械工程研究所碩士論文, 2000.
[8] D.E. Rumelhart, G.E. Hinton, and R.J. Williams,
“Learning Internal Representation by Error Propagation,”
Parallel Distributed Processing, Vol. 1, 1986.
[9] K.S. Narendra, and K. Parthasarathy, “Identification and
Control of Dynamical Systems Using Neural Networks,”IEEE Transactions on Neural Networks, Vol. 1, No. 1, March 1990.
IEEE Transactions on Neural Networks, Vol. 1, No. 1,
March 1990.
[10] R. Grino, G. Cembrano, and C. Torras, “Nonlinear
System Identification Using Additive Dynamic Neural
Networks-two On-line Approaches,” IEEE Transactions
on Circuits and Systems, Part I: Fundamental Theory and
Applications, Vol. 47, No. 2, pp. 150-165, February 2000.
[11] J.C. Patra, R.N. Pal, B.N. Chatterji, and G. Panda,
“Identification of Nonlinear Dynamic Systems Using
Functional Link Artificial Neural Networks,” IEEE
Transactions on Systems, Man and Cybernetics, Part B,
Vol. 29, No. 2, April 1999.
[12] M. Gori, A. Tesi, “On The Problem Of Local Minima In
Back-propagation,” IEEE Transactions. Pattern Anal.
Mach. Intell, 1992.
[13] K.S. Narendra, L.G. Kraft, L. Ungar, S.T. Venkataraman,
“Neural Networks for Identification and Control, 33 IEEE
Constabilizer Applications Using Participation Factors,”
IEEE Proc. 134 ference on Decision and Control,
Workshop no. 6, pp. 12-13, December 1994.
[14] M.A. Abido, Y.L. Abdel-Magid, “On-line Identification
of Synchronous Machines Using Radial Basis Function
Neural Networks,” IEEE Transactions on Power Systems,
Vol. 12, No. 4, November 1997.
[15] D. Ranaweera, G. Karady, “Active Power Contingency
Ranking Using a Radial Basis Function Network,” Eng.
Intell. Syst. 2 (3)(1994) 201—206.
[16] D.K. Ranaweera, N.F. Hubele, A.D. Papalexopoulos,“Application of Radial Basis Function Neural Network
Model for Short-term Load Forecasting,” IEE
Proc.-Gener. Transm. Distrib, Vol. 142, No. 1, 1995.
[17] M.A. Abido, Y.L. Abdel-Magid, “Adaptive Tuning of
Power System Stabilizers Using Radial Basis Function
Networks,” Electric Power Systems Research 49, pp.
21-29, June 1998.
[18] C.J. Wu, Y.Y. Hsu, “Design of Self-tuning PID Power
System Stabilizer for Multimachine Power Systems,”
IEEE Transactions on Power Systems, Vol. 3, No. 3,
1059-1064
[19] A. Ghandra, O.P. Malik, G.S. Hope, “A Self-tuning
Controller for the Control of Multi-machine Power
systems,” IEEE Transactions on Power Systems, Vol. 3,
No. 3, pp. 1065-1071, 1988.
[20] D. Xia, G.T. Heydt, “Self-tuning Controller for Generator
Excitation Control,” IEEE Transactions PAS 102, pp.
1877-1885, 1983.
[21] A.S. Ibrahim, B.W. Hogg, M.M. Sharaf, Self-tuning
Controllers for Turbogenerator Excitation and Governing
Systems, IEEE Proc, Vol. 136, pp. 238-251, 1989.
[22] T. Knohl, H. Unbehauen, “Adaptive Position Control of
Electrohydraulic Servo Systems Using ANN,”
Mechatronics 10, pp. 127-143, January 1999.
[23] W. Li, J.J.E. Slotine, Neural Network Control of
Unknown Nonlinear Systems. In: Proceedings of the
American Control Conference, Pittsburg, PA, pp. 1136-1141, 1989.
[24] P.M. Mills, A.Y. Zomaya, TadeÂMO. “Adaptive
Model-based Control Using Neural Networks.” Int
Journal of Control, 1994.
[25] 葉怡成, 類神經網路模式應用與實作, 儒林, 1995.
[26] 林昇甫, 洪成安, 神經網路入門與圖樣辨識, 全華科技,
1993.
[27] 王進德, 蕭大全, 類神經網路與模糊控制理論入門, 全
華科技, 1994.
[28] 焦李成, 神經網路系統理論, 儒林, 1991.
[29] 陳燕慶, 鹿浩, 神經網路理論及其在控制工程中的應用,
儒林, 1992.
[30] 林錦龍, “類神經網路控制器之設計,” 國立台灣科技大
學碩士論文, 1998.
[31] E. Mosca, Optimal Predictive and Adaptive Control,
Englewood Cliffs, NJ: Prentice-Hall, 1995.
[32] 韓曾晉, 適應控制系統, 科技圖書, 1992.
[33] K.A. Åström, Computer-controlled Systems, London:
Prentice-Hall, 1990.
[34] 鄭西顯, 計算機控制系統理論與設計, 國立編譯館,
1995.
[35] 趙清風, 基礎自動控制理論使用Matlab 程式語言, 全華
科技, 1999.
[36] 林超群, 自動控制系統設計與Matlab 語言, 全華科技,
1999.
[37] 李宜達, 控制系統設計與模擬, 全華科技, 1996.