跳到主要內容

簡易檢索 / 詳目顯示

研究生: 古惠珍
Hui-chen Ku
論文名稱: 綠茶表沒食子酸酯型唲茶素酸酯調節脂肪細胞內胰島素及類胰島素生長因子的訊息傳遞
Green tea epigallocatechin gallate controls signaling pathways of insulin and insulin-like growth factors in fat cells
指導教授: 高永旭
Yung-hsi Kao
口試委員:
學位類別: 博士
Doctor
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
畢業學年度: 100
語文別: 英文
論文頁數: 139
中文關鍵詞: 類胰島素生長因子胰島素脂肪細胞綠茶唲茶素
外文關鍵詞: glucose uptake, mitogenesis, IGF-II, IGF-I, insulin, EGCG
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 胰島素、第一型及第二型類胰島素生長因子、表沒食子酸酯型唲茶素酸酯(英文名epigallocatechin gallate;簡稱EGCG)都已被證實會調節脂肪細胞的功能。但是,關於EGCG對胰島素和類胰島素生長因子刺激前脂肪細胞增生和脂肪細胞的葡萄糖攝取之影響,其作用機制上仍不明瞭。在論文第一章中,我們發現EGCG使胰島素所促進信息蛋白的磷酸化受到抑制,如胰島素接受器(IR)、IRS1、IRS2、RAF1、MEK1/2、ERK1/2的磷酸化受到抑制,但JNK的磷酸化未受影響。EGCG抑制IR與IRS1和IRS2兩者之間的結合作用,但與IRS4結合未受影響。這些研究顯示,EGCG的選擇性影響特定類型的IRS和MAPK蛋白。EGCG使胰島素所促進67LR和IR、IRS1、IRS2、IRS4蛋白結合作用增加。這些研究顯示,EGCG抑制胰島素訊息而使前脂肪細胞增生受到抑制是經由67LR的訊息傳導。在第二章中,我們發現EGCG抑制IGF-Ⅰ和IGF-Ⅱ所刺激的p66Shc和MAPK訊息分子的磷酸化,包括RAF1、MEK1、ERK1/2蛋白質的磷酸化,但PKB、p52Shc、或p46Shc不受影響 。此外,我們的研究顯示,EGCG抑制第一型及第二型類胰島素生長因子訊息而使前脂肪細胞增生受到抑制是經由67LR途徑而不是AMPK的途徑。在第三章中,我們發現EGCG抑制IGF-I和IGF-Ⅱ所刺激脂肪細胞的葡萄糖攝取是經由67LR路徑。EGCG抑制IGF-I和IGF-Ⅱ所刺激之PKCζ/λ磷酸化,但ERK和AKT的磷酸化未受抑制。在3T3-L1脂肪細胞,EGCG抑制IGF-I和IGF-Ⅱ刺激葡萄糖攝取是藉由減少GLUT4轉位(translocation)和67LR和AMPK途徑。此論文研究結果有助於說明EGCG調節胰島素、IGF-Ⅰ、IGF-Ⅱ於脂肪細胞的作用機制,以及EGCG調節體重的作用機制。


    Insulin, insulin-like growth factor (IGF)-I and -II, and (−)-epigallocatechin gallate (EGCG) have been reported to regulate fat cell functions. However, it is still not clear how EGCG acts on insulin and IGFs signaling pathways for stimulating mitogenesis and glucose uptake in fat cells. The first chapter indicated that EGCG suppressed insulin-stimulated phosphorylation of the insulin receptor-β, insulin receptor (IR) substrates 1 and 2 (IRS1 and IRS2), and MAPK pathway proteins, RAF1, MEK1/2, and ERK1/2, but not JNK. EGCG inhibited the association of IR with the IRS1 and IRS2 proteins, but not with the IRS4 protein. These data suggest that EGCG selectively affects particular types of IRS and MAPK family members. EGCG tended to increase insulin-stimulated associations between the 67LR and IR, IRS1, IRS2, and IRS4 proteins. These data suggest that EGCG mediates anti-insulin signaling in preadipocyte mitogenesis via the 67LR pathway. The second chapter indicated that EGCG suppressed IGF-I-stimulated and IGF-II-stimulated phosphorylation of p66Shc and MAPK pathway proteins, including RAF1, MEK1, and ERK1/2, but not JNK, protein kinase B, p52Shc, or p46Shc. Furthermore, we demonstrated that EGCG mediates anti-IGF-I and anti-IGF-II signals in preadipocyte mitogenesis via the 67LR but not the AMPK pathway. The third chapter indicated that EGCG inhibited IGF-I and IGF-II stimulation of adipocyte glucose uptake. The 67LR mediated the effect of EGCG on IGF-stimulated glucose uptake in adipocytes. EGCG suppressed the IGF-stimulated phosphorylation of PKCζ/λ, but not Akt or ERK, proteins. EGCG inhibited IGF stimulation of 3T3-L1 adipocyte glucose uptake through downregulated GLUT4 translocation and IGF signaling by the 67LR- and AMPK-dependent pathways. Results of this dissertation would help explain the mechanisms of how EGCG regulates insulin-, IGF-I-, and IGF-II-mediated actions on fat cells and how it exerts its antiobese effect.

    中文摘要 ..................................................................................................... I Abstract ..................................................................................................... II Declaration ............................................................................................ IV Acknowledgment .................................................................................... V Table of Contents ................................................................................... VI List of Figures .................................................................................... VIII Abbreviations ...................................................................................... XII Overall Introduction ............................................................................... 1 Chapter One .............................................................................................. 5 Abstract ................................................................................................ 6 Introduction ......................................................................................... 7 Materials and Methods .................................................................... 10 Results ................................................................................................ 16 Discussion .......................................................................................... 22 Chapter Two ............................................................................................ 27 Abstract .............................................................................................. 28 Introduction ....................................................................................... 29 Materials and Methods .................................................................... 32 Results ................................................................................................ 36 Discussion .......................................................................................... 40 Chapter Three ......................................................................................... 46 Abstract .............................................................................................. 47 Introduction ....................................................................................... 48 Materials and Methods .................................................................... 52 Results ................................................................................................ 57 Discussion .......................................................................................... 61 Conclusions .............................................................................................. 64 References ................................................................................................ 66 Appendix ................................................................................................ 123

    1. Kopelman PG 2000 Obesity as a medical problem. Nature 404:635-643
    2. Green H, Kehinde O 1975 An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5:19-27
    3. LeRoith D, Werner H, Beitner-Johnson D, Roberts CT, Jr. 1995 Molecular and cellular aspects of the insulin-like growth factor I receptor. Endocr Rev 16:143-163
    4. Kao YH, Hiipakka RA, Liao S 2000 Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 141:980-987
    5. White MF 2002 IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283:E413-422
    6. Hung PF, Wu BT, Chen HC, Chen YH, Chen CL, Wu MH, Liu HC, Lee MJ, Kao YH 2005 Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am J Physiol Cell Physiol 288:C1094-1108
    7. Kao YH, Chang HH, Lee MJ, Chen CL 2006 Tea, obesity, and diabetes. Mol Nutr Food Res 50:188-210
    8. Boney CM, Gruppuso PA, Faris RA, Frackelton AR, Jr. 2000 The critical role of Shc in insulin-like growth factor-I-mediated mitogenesis and differentiation in 3T3-L1 preadipocytes. Mol Endocrinol 14:805-813
    9. El-Shewy HM, Luttrell LM 2009 Insulin-like growth factor-2/mannose-6 phosphate receptors. Vitam Horm 80:667-697
    10. Okamoto T, Nishimoto I 1991 Analysis of stimulation-G protein subunit coupling by using active insulin-like growth factor II receptor peptide. Proc Natl Acad Sci U S A 88:8020-8023
    11. Ku HC, Chang HH, Liu HC, Hsiao CH, Lee MJ, Hu YJ, Hung PF, Liu CW, Kao YH 2009 Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. Am J Physiol Cell Physiol 297:C121-132
    12. Lambert JD, Lee MJ, Lu H, Meng X, Hong JJ, Seril DN, Sturgill MG, Yang CS 2003 Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr 133:4172-4177
    13. Li M, He Z, Ermakova S, Zheng D, Tang F, Cho YY, Zhu F, Ma WY, Sham Y, Rogozin EA, Bode AM, Cao Y, Dong Z 2007 Direct inhibition of insulin-like growth factor-I receptor kinase activity by (-)-epigallocatechin-3-gallate regulates cell transformation. Cancer EpidemiolBiomarkers Prev 16:598-605
    14. Shimizu M, Deguchi A, Hara Y, Moriwaki H, Weinstein IB 2005 EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells. Biochem Biophys Res Commun 334:947-953
    15. Shimizu M, Shirakami Y, Sakai H, Tatebe H, Nakagawa T, Hara Y, Weinstein IB, Moriwaki H 2008 EGCG inhibits activation of the insulin-like growth factor (IGF)/IGF-1 receptor axis in human hepatocellular carcinoma cells. Cancer Lett 262:10-18
    16. Waltner-Law ME, Wang XL, Law BK, Hall RK, Nawano M, Granner DK 2002 Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 277:34933-34940
    17. Anton S, Melville L, Rena G 2007 Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1a and elicits cellular responses in the presence and absence of insulin. Cell Signal 19:378-383
    18. Tachibana H, Koga K, Fujimura Y, Yamada K 2004 A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 11:380-381
    19. Mecham RP 1991 Receptors for laminin on mammalian cells. FASEB J 5:2538-2546
    20. Sah JF, Balasubramanian S, Eckert RL, Rorke EA 2004 Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases. J Biol Chem 279:12755-12762
    21. Kobayashi Y, Suzuki M, Satsu H, Arai S, Hara Y, Suzuki K, Miyamoto Y, Shimizu M 2000 Green tea polyphenols inhibit the sodium-dependent glucose transporter of intestinal epithelial cells by a competitive mechanism. J Agric Food Chem 48:5618-5623
    22. Naftalin RJ, Afzal I, Cunningham P, Halai M, Ross C, Salleh N, Milligan SR 2003 Interactions of androgens, green tea catechins and the antiandrogen flutamide with the external glucose-binding site of the human erythrocyte glucose transporter GLUT1. Br J Pharmacol 140:487-499
    23. Ueda M, Nishiumi S, Nagayasu H, Fukuda I, Yoshida K, Ashida H 2008 Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle. Biochem Biophys Res Commun 377:286-290
    24. Nomura M, Takahashi T, Nagata N, Tsutsumi K, Kobayashi S, Akiba T, Yokogawa K, Moritani S, Miyamoto K 2008 Inhibitory mechanisms of flavonoids on insulin-stimulated glucose uptake in MC3T3-G2/PA6 adipose cells. Biol Pharm Bull 31:1403-1409
    25. Anderson RA, Polansky MM 2002 Tea enhances insulin activity. J AgricFood Chem 50:7182-7186
    26. Lin CL, Lin JK 2008 Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells. Mol Nutr Food Res 52:930-939
    27. Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, Riegger C, Weber P 2006 Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr 136:2512-2518
    28. Hsieh CF, Tsuei YW, Liu CW, Kao CC, Shih LJ, Ho LT, Wu LY, Wu CP, Tsai PH, Chang HH, Ku HC, Kao YH Green tea epigallocatechin gallate inhibits insulin stimulation of adipocyte glucose uptake via the 67-kilodalton laminin receptor and AMP-activated protein kinase pathways. Planta Med 76:1694-1698
    29. Zorzano A, Wilkinson W, Kotliar N, Thoidis G, Wadzinkski BE, Ruoho AE, Pilch PF 1989 Insulin-regulated glucose uptake in rat adipocytes is mediated by two transporter isoforms present in at least two vesicle populations. J Biol Chem 264:12358-12363
    30. Weiland M, Schurmann A, Schmidt WE, Joost HG 1990 Development of the hormone-sensitive glucose transport activity in differentiating 3T3-L1 murine fibroblasts. Role of the two transporter species and their subcellular localization. Biochem J 270:331-336
    31. Lund S, Flyvbjerg A, Holman GD, Larsen FS, Pedersen O, Schmitz O 1994 Comparative effects of IGF-I and insulin on the glucose transporter system in rat muscle. Am J Physiol 267:E461-466
    32. Wilson CM, Mitsumoto Y, Maher F, Klip A 1995 Regulation of cell surface GLUT1, GLUT3, and GLUT4 by insulin and IGF-I in L6 myotubes. FEBS Lett 368:19-22
    33. Farese RV, Sajan MP, Standaert ML 2005 Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): actions and defects in obesity and type II diabetes. Exp Biol Med (Maywood) 230:593-605
    34. Bae SS, Cho H, Mu J, Birnbaum MJ 2003 Isoform-specific regulation of insulin-dependent glucose uptake by Akt/protein kinase B. J Biol Chem 278:49530-49536
    35. Kohn AD, Summers SA, Birnbaum MJ, Roth RA 1996 Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 271:31372-31378
    36. Kohn AD, Barthel A, Kovacina KS, Boge A, Wallach B, Summers SA, Birnbaum MJ, Scott PH, Lawrence JC, Jr., Roth RA 1998 Constructionand characterization of a conditionally active version of the serine/threonine kinase Akt. J Biol Chem 273:11937-11943
    37. Bandyopadhyay G, Standaert ML, Sajan MP, Karnitz LM, Cong L, Quon MJ, Farese RV 1999 Dependence of insulin-stimulated glucose transporter 4 translocation on 3-phosphoinositide-dependent protein kinase-1 and its target threonine-410 in the activation loop of protein kinase C-zeta. Mol Endocrinol 13:1766-1772
    38. Bandyopadhyay G, Standaert ML, Zhao L, Yu B, Avignon A, Galloway L, Karnam P, Moscat J, Farese RV 1997 Activation of protein kinase C (alpha, beta, and zeta) by insulin in 3T3/L1 cells. Transfection studies suggest a role for PKC-zeta in glucose transport. J Biol Chem 272:2551-2558
    39. Chang L, Chiang SH, Saltiel AR 2004 Insulin signaling and the regulation of glucose transport. Mol Med 10:65-71
    40. Otto TC, Lane MD 2005 Adipose development: from stem cell to adipocyte. Crit Rev Biochem Mol Biol 40:229-242
    41. Roberts E 1952 The chemistry of tea fermentation. Journal of science and food agriculture 13:193-198
    42. Rusznyak S, Szent-Gyorgri A 1936 Vitamin P: flavanols as vitamins. Nature 138:27
    43. Kao YH, Hiipakka RA, Liao S 2000 Modulation of obesity by a green tea catechin. Am J Clin Nutr 72:1232-1234
    44. Liao S, Kao YH, Hiipakka RA 2001 Green tea: biochemical and biological basis for health benefits. Vitam Horm 62:1-94
    45. Lin JK, Lin-Shiau SY 2006 Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res 50:211-217
    46. Liu HS, Chen YH, Hung PF, Kao YH 2006 Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. Am J Physiol Endocrinol Metab 290:E273-281
    47. Wolfram S, Wang Y, Thielecke F 2006 Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 50:176-187
    48. Wu BT, Hung PF, Chen HC, Huang RN, Chang HH, Kao YH 2005 The apoptotic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the Cdk2 pathway. J Agric Food Chem 53:5695-5701
    49. Lin JK, Liang YC, Lin-Shiau SY 1999 Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem Pharmacol 58:911-915
    50. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, Chantre P,Vandermander J 1999 Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr 70:1040-1045
    51. Dulloo AG, Seydoux J, Girardier L, Chantre P, Vandermander J 2000 Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord 24:252-258
    52. Watanabe J, Kawabata J, Niki R 1998 Isolation and identification of acetyl-CoA carboxylase inhibitors from green tea (Camellia sinensis). Biosci Biotechnol Biochem 62:532-534
    53. Yeh CW, Chen WJ, Chiang CT, Lin-Shiau SY, Lin JK 2003 Suppression of fatty acid synthase in MCF-7 breast cancer cells by tea and tea polyphenols: a possible mechanism for their hypolipidemic effects. Pharmacogenomics J 3:267-276
    54. Shimizu S, Itoh Y, Yamashita A, Kitano A, Hatano T, Yoshida T, Okuda T 1994 Inhibitory effects of flavonoids on lipase. Nippon Shokuhin Kogyo Gakkaishi 41:847-850
    55. Ho CT, Chen Q, Shi H, Zhang KQ, Rosen RT 1992 Antioxidative effect of polyphenol extract prepared from various Chinese teas. Prev Med 21:520-525
    56. Ahmad N, Mukhtar H 1999 Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutr Rev 57:78-83
    57. Balasubramanian S, Efimova T, Eckert RL 2002 Green tea polyphenol stimulates a Ras, MEKK1, MEK3, and p38 cascade to increase activator protein 1 factor-dependent involucrin gene expression in normal human keratinocytes. J Biol Chem 277:1828-1836
    58. Chung JY, Huang C, Meng X, Dong Z, Yang CS 1999 Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved. Cancer Res 59:4610-4617
    59. Chung JY, Park JO, Phyu H, Dong Z, Yang CS 2001 Mechanisms of inhibition of the Ras-MAP kinase signaling pathway in 30.7b Ras 12 cells by tea polyphenols (-)-epigallocatechin-3-gallate and theaflavin-3,3''-digallate. FASEB J 15:2022-2024
    60. Levites Y, Amit T, Youdim MB, Mandel S 2002 Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 277:30574-30580
    61. Weinreb O, Mandel S, Youdim MB 2003 cDNA gene expression profile homology of antioxidants and their antiapoptotic and proapoptotic activities inhuman neuroblastoma cells. FASEB J 17:935-937
    62. Burton GR, Nagarajan R, Peterson CA, McGehee RE, Jr. 2004 Microarray analysis of differentiation-specific gene expression during 3T3-L1 adipogenesis. Gene 329:167-185
    63. Niimi T, Kumagai C, Okano M, Kitagawa Y 1997 Differentiation-dependent expression of laminin-8 (alpha 4 beta 1 gamma 1) mRNAs in mouse 3T3-L1 adipocytes. Matrix Biol 16:223-230
    64. Harmon AW, Harp JB 2001 Differential effects of flavonoids on 3T3-L1 adipogenesis and lipolysis. Am J Physiol Cell Physiol 280:C807-813
    65. Bradford MM 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254
    66. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR 1995 PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270:27489-27494
    67. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS, Van Dyk DE, Pitts WJ, Earl RA, Hobbs F, Copeland RA, Magolda RL, Scherle PA, Trzaskos JM 1998 Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 273:18623-18632
    68. Engelman JA, Lisanti MP, Scherer PE 1998 Specific inhibitors of p38 mitogen-activated protein kinase block 3T3-L1 adipogenesis. J Biol Chem 273:32111-32120
    69. Brunn GJ, Williams J, Sabers C, Wiederrecht G, Lawrence JC, Jr., Abraham RT 1996 Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. EMBO J 15:5256-5267
    70. Chen YH, Hung PF, Kao YH 2005 IGF-I downregulates resistin gene expression and protein secretion. Am J Physiol Endocrinol Metab 288:E1019-1027
    71. Chen YH, Lee MJ, Chang HH, Hung PF, Kao YH 2006 17 beta-estradiol stimulates resistin gene expression in 3T3-L1 adipocytes via the estrogen receptor, extracellularly regulated kinase, and CCAAT/enhancer binding protein-alpha pathways. Endocrinology 147:4496-4504
    72. Carel K, Kummer JL, Schubert C, Leitner W, Heidenreich KA, Draznin B 1996 Insulin stimulates mitogen-activated protein kinase by a Ras-independent pathway in 3T3-L1 adipocytes. J Biol Chem 271:30625-30630
    73. White MF 1998 The IRS-signalling system: a network of docking proteinsthat mediate insulin action. Mol Cell Biochem 182:3-11
    74. Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH 2001 Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153-183
    75. Tsuruzoe K, Emkey R, Kriauciunas KM, Ueki K, Kahn CR 2001 Insulin receptor substrate 3 (IRS-3) and IRS-4 impair IRS-1- and IRS-2-mediated signaling. Mol Cell Biol 21:26-38
    76. Becker WM, Kleinsmith LJ, Hardin J 2003 The World of the Cell (5th ed.). San Francisco, CA: Benjamin Cummings
    77. Hadley ME LJ 2007 Endocrinology (6th ed.). NJ: Prentice Hall: Upper Saddle River
    78. Uchida T, G M, Jr M, White MF 2000 IRS-4 mediates protein kinase B signaling during insulin stimulation without promoting antiapoptosis. Mol Cell Biol 20:126-138
    79. Fantin VR, Sparling JD, Slot JW, Keller SR, Lienhard GE, Lavan BE 1998 Characterization of insulin receptor substrate 4 in human embryonic kidney 293 cells. J Biol Chem 273:10726-10732
    80. Fantin VR, Keller SR, Lienhard GE, Wang LM 1999 Insulin receptor substrate 4 supports insulin- and interleukin 4-stimulated proliferation of hematopoietic cells. Biochem Biophys Res Commun 260:718-723
    81. Qu BH, Karas M, Koval A, LeRoith D 1999 Insulin receptor substrate-4 enhances insulin-like growth factor-I-induced cell proliferation. J Biol Chem 274:31179-31184
    82. Yang CS, Wang ZY 1993 Tea and cancer. J Natl Cancer Inst 85:1038-1049
    83. Jackers P, Minoletti F, Belotti D, Clausse N, Sozzi G, Sobel ME, Castronovo V 1996 Isolation from a multigene family of the active human gene of the metastasis-associated multifunctional protein 37LRP/p40 at chromosome 3p21.3. Oncogene 13:495-503
    84. Clausse N, Jackers P, Jares P, Joris B, Sobel ME, Castronovo V 1996 Identification of the active gene coding for the metastasis-associated 37LRP/p40 multifunctional protein. DNA Cell Biol 15:1009-1023
    85. Makrides S, Chitpatima ST, Bandyopadhyay R, Brawerman G 1988 Nucleotide sequence for a major messenger RNA for a 40 kilodalton polypeptide that is under translational control in mouse tumor cells. Nucleic Acids Res 16:2349
    86. Umeda D, Tachibana H, Yamada K 2005 Epigallocatechin-3-O-gallate disrupts stress fibers and the contractile ring by reducing myosin regulatory light chain phosphorylation mediated through the target molecule 67 kDalaminin receptor. Biochem Biophys Res Commun 333:628-635
    87. Kao CC, Wu BT, Tsuei YW, Shih LJ, Kuo YL, Kao YH Green tea catechins: inhibitors of glycerol-3-phosphate dehydrogenase. Planta Med 76:694-696
    88. Ogasawara J, Kitadate K, Nishioka H, Fujii H, Sakurai T, Kizaki T, Izawa T, Ishida H, Ohno H Comparison of the effect of oligonol, a new lychee fruit-derived low molecular form of polyphenol, and epigallocatechin-3-gallate on lipolysis in rat primary adipocytes. Phytother Res 25:467-471
    89. Chen L, Lee MJ, Li H, Yang CS 1997 Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos 25:1045-1050
    90. Feng WY 2006 Metabolism of green tea catechins: an overview. Curr Drug Metab 7:755-809
    91. Yang CS, Wang X, Lu G, Picinich SC 2009 Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9:429-439
    92. Ku HC, Liu HS, Hung PF, Chen CL, Liu HC, Chang HH, Tsuei YW, Shih LJ, Lin CL, Lin CM, Kao YH Green tea (-)-epigallocatechin gallate inhibits IGF-I and IGF-IIstimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway. Mol Nutr Food Res 56:580-592
    93. Shan BE, Wang MX, Li RQ 2009 Quercetin inhibit human SW480 colon cancer growth in association with inhibition of cyclin D1 and survivin expression through Wnt/beta-catenin signaling pathway. Cancer Invest 27:604-612
    94. Shimizu M, Shirakami Y, Moriwaki H 2008 Targeting receptor tyrosine kinases for chemoprevention by green tea catechin, EGCG. Int J Mol Sci 9:1034-1049
    95. Vanamala J, Reddivari L, Radhakrishnan S, Tarver C Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways. BMC Cancer 10:238
    96. Xia Y, Jin L, Zhang B, Xue H, Li Q, Xu Y 2007 The potentiation of curcumin on insulin-like growth factor-1 action in MCF-7 human breast carcinoma cells. Life Sci 80:2161-2169
    97. Zhang J 2006 Resveratrol inhibits insulin responses in a SirT1-independent pathway. Biochem J 397:519-527
    98. Hsu CL, Yen GC 2006 Induction of cell apoptosis in 3T3-L1 pre-adipocytes by flavonoids is associated with their antioxidant activity. Mol Nutr Food Res50:1072-1079
    99. Hsu CL, Yen GC 2008 Phenolic compounds: evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol Nutr Food Res 52:53-61
    100. Kim H, Hiraishi A, Tsuchiya K, Sakamoto K (-) Epigallocatechin gallate suppresses the differentiation of 3T3-L1 preadipocytes through transcription factors FoxO1 and SREBP1c. Cytotechnology 62:245-255
    101. Weinreb O, Amit T, Mandel S, Youdim MBH 2009 Neuroprotective molecular mechanisms of (-)-epigallocatechin-3-gallate: a reflective outcome of its antioxidant, iron chelating and neuritogenic properties. Genes Nutr 4:283-296
    102. Pietta PG 2000 Flavonoids as antioxidants. J Nat Prod 63:1035-1042
    103. van Acker SA, van den Berg DJ, Tromp MN, Griffioen DH, van Bennekom WP, van der Vijgh WJ, Bast A 1996 Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 20:331-342
    104. Umeda D, Yano S, Yamada K, Tachibana H 2008 Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. J Biol Chem 283:3050-3058
    105. Wang CT, Chang HH, Hsiao CH, Lee MJ, Ku HC, Hu YJ, Kao YH 2009 The effects of green tea (-)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways. Mol Nutr Food Res 53:349-360
    106. Fukuoka H, Iida K, Nishizawa H, Imanaka M, Takeno R, Iguchi G, Takahashi M, Okimura Y, Kaji H, Chihara K, Takahashi Y IGF-I stimulates reactive oxygen species (ROS) production and inhibits insulin-dependent glucose uptake via ROS in 3T3-L1 adipocytes. Growth Horm IGF Res 20:212-219
    107. Wolfram S 2007 Effects of green tea and EGCG on cardiovascular and metabolic health. J Am Coll Nutr 26:373S-388S
    108. Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, Yang CS 2008 The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J Nutr 138:1677-1683
    109. LeRoith D, Roberts CT, Jr. 2003 The insulin-like growth factor system and cancer. Cancer Lett 195:127-137
    110. Sabu MC, Smitha K, Kuttan R 2002 Anti-diabetic activity of green tea polyphenols and their role in reducing oxidative stress in experimental diabetes. J Ethnopharmacol 83:109-116111. Morre DJ, Bridge A, Wu LY, Morre DM 2000 Preferential inhibition by (-)-epigallocatechin-3-gallate of the cell surface NADH oxidase and growth of transformed cells in culture. Biochem Pharmacol 60:937-946
    112. Suganuma M, Okabe S, Sueoka N, Sueoka E, Matsuyama S, Imai K, Nakachi K, Fujiki H 1999 Green tea and cancer chemoprevention. Mutat Res 428:339-344
    113. Lee MS, Kim CT, Kim Y 2009 Green tea (-)-epigallocatechin-3-gallate reduces body weight with regulation of multiple genes expression in adipose tissue of diet-induced obese mice. Ann Nutr Metab 54:151-157
    114. Murase T, Misawa K, Haramizu S, Hase T 2009 Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem Pharmacol 78:78-84
    115. Calixto JB, Campos MM, Otuki MF, Santos AR 2004 Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 70:93-103
    116. Koyama Y, Abe K, Sano Y, Ishizaki Y, Njelekela M, Shoji Y, Hara Y, Isemura M 2004 Effects of green tea on gene expression of hepatic gluconeogenic enzymes in vivo. Planta Med 70:1100-1102
    117. Ashida H, Furuyashiki T, Nagayasu H, Bessho H, Sakakibara H, Hashimoto T, Kanazawa K 2004 Anti-obesity actions of green tea: possible involvements in modulation of the glucose uptake system and suppression of the adipogenesis-related transcription factors. Biofactors 22:135-140
    118. Smith PJ, Wise LS, Berkowitz R, Wan C, Rubin CS 1988 Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem 263:9402-9408
    119. Bevan SJ, Parry-Billings M, Opara E, Liu CT, Dunger DB, Newsholme EA 1992 The effect of insulin-like growth factor II on glucose uptake and metabolism in rat skeletal muscle in vitro. Biochem J 286 ( Pt 2):561-565
    120. Siddals KW, Westwood M, Gibson JM, White A 2002 IGF-binding protein-1 inhibits IGF effects on adipocyte function: implications for insulin-like actions at the adipocyte. J Endocrinol 174:289-297
    121. Burguera B, Elton CW, Caro JF, Tapscott EB, Pories WJ, Dimarchi R, Sakano K, Dohm GL 1994 Stimulation of glucose uptake by insulin-like growth factor II in human muscle is not mediated by the insulin-like growth factor II/mannose 6-phosphate receptor. Biochem J 300 ( Pt 3):781-785
    122. Simpson IA, Cushman SW 1986 Hormonal regulation of mammalian glucose transport. Annu Rev Biochem 55:1059-1089
    123. Czech MP, Corvera S 1999 Signaling mechanisms that regulate glucosetransport. J Biol Chem 274:1865-1868
    124. Daval M, Foufelle F, Ferre P 2006 Functions of AMP-activated protein kinase in adipose tissue. J Physiol 574:55-62
    125. Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ 2005 Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 338:694-699
    126. Habinowski SA, Witters LA 2001 The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 286:852-856
    127. Kahn BB, Alquier T, Carling D, Hardie DG 2005 AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15-25
    128. Salt IP, Connell JM, Gould GW 2000 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes. Diabetes 49:1649-1656
    129. Codina M, Garcia de la serrana D, Sanchez-Gurmaches J, Montserrat N, Chistyakova O, Navarro I, Gutierrez J 2008 Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signalling pathways. Gen Comp Endocrinol 157:116-124
    130. Tamori Y, Kawanishi M, Niki T, Shinoda H, Araki S, Okazawa H, Kasuga M 1998 Inhibition of insulin-induced GLUT4 translocation by Munc18c through interaction with syntaxin4 in 3T3-L1 adipocytes. J Biol Chem 273:19740-19746
    131. Ueda M, Furuyashiki T, Yamada K, Aoki Y, Sakane I, Fukuda I, Yoshida K, Ashida H Tea catechins modulate the glucose transport system in 3T3-L1 adipocytes. Food Funct 1:167-173
    132. Piper RC, Hess LJ, James DE 1991 Differential sorting of two glucose transporters expressed in insulin-sensitive cells. Am J Physiol 260:C570-580
    133. Rachdaoui N, Nagy LE 2003 Endothelin-1-stimulated glucose uptake is desensitized by tumor necrosis factor-alpha in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 285:E545-551
    134. Walker JM 2002 The protein protocals handbook. second ed. Totowa, NJ: Human Press Inc.
    135. Sung HY, Hong CG, Suh YS, Cho HC, Park JH, Bae JH, Park WK, Han J, Song DK Role of (-)-epigallocatechin-3-gallate in cell viability, lipogenesis, and retinol-binding protein 4 expression in adipocytes. Naunyn Schmiedebergs Arch Pharmacol 382:303-310136. Moon HS, Lee HG, Choi YJ, Kim TG, Cho CS 2007 Proposed mechanisms of (-)-epigallocatechin-3-gallate for anti-obesity. Chem Biol Interact 167:85-98
    137. Valverde AM, Navarro P, Teruel T, Conejo R, Benito M, Lorenzo M 1999 Insulin and insulin-like growth factor I up-regulate GLUT4 gene expression in fetal brown adipocytes, in a phosphoinositide 3-kinase-dependent manner. Biochem J 337 ( Pt 3):397-405
    138. Karlsson M, Thorn H, Parpal S, Stralfors P, Gustavsson J 2002 Insulin induces translocation of glucose transporter GLUT4 to plasma membrane caveolae in adipocytes. FASEB J 16:249-251
    139. Elmendorf JS 2002 Signals that regulate GLUT4 translocation. J Membr Biol 190:167-174
    140. Cao H, Hininger-Favier I, Kelly MA, Benaraba R, Dawson HD, Coves S, Roussel AM, Anderson RA 2007 Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet. J Agric Food Chem 55:6372-6378
    141. Valverde AM, Lorenzo M, Navarro P, Benito M 1997 Phosphatidylinositol 3-kinase is a requirement for insulin-like growth factor I-induced differentiation, but not for mitogenesis, in fetal brown adipocytes. Mol Endocrinol 11:595-607
    142. Valverde AM, Lorenzo M, Navarro P, Mur C, Benito M 2000 Okadaic acid inhibits insulin-induced glucose transport in fetal brown adipocytes in an Akt-independent and protein kinase C zeta-dependent manner. FEBS Lett 472:153-158
    143. Hernandez R, Teruel T, Lorenzo M 2001 Akt mediates insulin induction of glucose uptake and up-regulation of GLUT4 gene expression in brown adipocytes. FEBS Lett 494:225-231
    144. Clarke JF, Young PW, Yonezawa K, Kasuga M, Holman GD 1994 Inhibition of the translocation of GLUT1 and GLUT4 in 3T3-L1 cells by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Biochem J 300 ( Pt 3):631-635
    145. Tanti JF, Gremeaux T, Grillo S, Calleja V, Klippel A, Williams LT, Van Obberghen E, Le Marchand-Brustel Y 1996 Overexpression of a constitutively active form of phosphatidylinositol 3-kinase is sufficient to promote Glut 4 translocation in adipocytes. J Biol Chem 271:25227-25232
    146. Jiang ZY, Woollard AC, Wolff SP 1990 Hydrogen peroxide production during experimental protein glycation. FEBS Lett 268:69-71

    QR CODE
    :::