跳到主要內容

簡易檢索 / 詳目顯示

研究生: 連怡安
Yi-An Lien
論文名稱: 多模式經顱電刺激裝置設計與臨床驗證
Design of Multi-mode Transcranial Electrical Stimulation Device and its Clinical Validation
指導教授: 李柏磊
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 87
中文關鍵詞: 經顱電刺激經顱直流電刺激經顱交流電刺激非侵入式腦刺激通過時間干涉的非侵入式深部腦刺激
外文關鍵詞: transcranial electrical stimmulation, transcranial alternative current stimulation
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦電刺激(EBS)在臨床應用上非常廣泛,從憂鬱症、躁鬱症、思覺失調症等精神疾病到帕金森氏症、急慢性疼痛都有研究與試驗正在進行。腦電刺激被視為一種不使用藥物治療的有效替代方法,尤其是非侵入式的腦電刺激技術-經顱電刺激,擁有便利、副作用少和安全性高的優點。
    本研究設計開發了一套擁有多模式可供切換的經顱電刺激裝置,除了經顱直流電刺激(tDCS)、經顱交流電刺激(tACS)外,還有通過時間干涉的非侵入式深部腦刺激(TI-NIDBS)。TI-NIDBS 刺激方式能刺激到深層區域的神經元,並且不會激發表層皮質的神經元,可以達到精準的深部刺激。本研究目的在於發展具有多模式可程式化的電刺激裝置,並具備藍芽供無線傳輸之用,使用者可經由電腦或手機軟體進行模式切換,也可自由調整電流強度、波型、頻率等刺激參數,並即時監控電流強度,提升未來臨床研究人員操作便利性。
    我們在豬隻身上進行臨床動物實驗以了解各模式的成效,目前透過侵入式電極與表面電極同步收集tDCS刺激前後的腦波資料,分析後發現成功改變腦波強度;TI-NIDBS的刺激效果也經由收集腦部電場獲得確認。本系統對於組織不會造成傷害,其安全性已經由組織切片確認。


    Transcranial Electrical Stimulation(TES) has been adopted to treat several clinical diseases, such as depression, bipolar affective disorders, and mental disorders to Parkinson's disease, acute and chronic pain. The TES has been regarded as an alternative electro-pharmaceutical treatmemnt which has the advantages of safe, less side-effects, noninvasive and high convenience.
    In this study, we designed a multi-mode TES device. Users can use mobile phone or PC to switch the TES modes among transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), and non-invasive deep brain stimulation through time interfering (TI-NIDBS), through bluetooth connections. Also, the stimulation parameters, i.e., current intensity or stimulation frequency, can be online programmed in accordance with the user’s need as well. In addition, for safety concern, the intensity of stimulation current can be real-time monitored and controlled. The stimulation pattern of our TES system has been validated in both animmal and human sutdies. We collected the intensity of electric fields inside the brain of two little pigs using six-channel stereoelectroencephalography (SEEG) located at left- and right-hemisphere sensorimotor area, frontal area and hippocampus area. Both the tDCS and tACS techniques successfully enhanced the brain rhythms, and a clear modulated 140 Hz stimmultion was also observed in the deep hippocampus area using TI-NIDBS technique. No tissue dammage was confimred in the brains of the two little pigs through biological tissue biopsy examinations after tDCS, tACS and TI-NIDBS in our study.

    中文摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 ix 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 文獻探討 3 1-4 論文章節架構 5 第二章 原理介紹 6 2-1 經顱電刺激 6 2-1-1 經顱直流電刺激 8 2-1-2 經顱交流電刺激 12 2-1-3 透過暫時干涉電場進行的非侵入式深部大腦刺激 15 2-2 Howland電流源電路 17 2-2-1 Improved Howland Current Pump 17 2-2-2 Improved Howland Current Pump with buffered feedback path 19 第三章 研究設計與方法 21 3-1 多模式經顱電刺激裝置硬體架構 21 3-2 實驗系統設計 29 3-3 實驗方法 30 3-3-1 電刺激裝置實驗 30 3-3-2 動物臨床試驗一 31 3-3-3 動物臨床試驗二 32 3-3-4 直流電刺激裝置人體試驗 36 第四章 實驗結果與討論 37 4-1 經顱電刺激裝置測試 37 4-2 第一次動物試驗 40 4-3 第二次動物試驗 44 4-4 人體試驗 56 第五章 結論與未來展望 60 第六章 參考文獻 61

    [1] Grossman. Nir, et al. "Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.", Cell, vol. 169(6), pp. 1029-1041, 2017.
    [2] Kellaway, Peter , " The part played by electric fish in the early history of bioelectricity and electrotherapy.", Bulletin of the History of Medicine, vol.20(2), pp. 112-137, 1946.
    [3] Priori, Alberto, "Brain polarization in humans: a reappraisal of an old tool for prolonged non-invasive modulation of brain excitability.", Clinical neurophysiol, vol.114(4), pp. 589-595, 2003.
    [4] Abrams, Richard, Electroconvulsive therapy(4th ed.), Oxford University Press, New York, 2002.
    [5] Baghai, T. C., M. Lieb, R. Rupprecht, "Electroconvulsive Therapy - Indications and Practical Use for Pharmacotherapy Resistant Depressive Disorders.", Fortschritte der Neurologie Psychiatrie, vol.80(12), pp. 720-730, 2012.
    [6] Gilula, Marshall F., Daniel L. Kirsch, "Cranial electrotherapy stimulation review: a safer alternative to psychopharmaceuticals in the treatment of depression.", Journal of Neurotherapy, vol.9(2), pp. 7-26, 2005.
    [7] Bini, Lucio, "Professor Bini's notes on the first electro-shock experiment.", Convulsive therapy, vol.11(4), pp. 260, 1995.
    [8] Creutzfeldt, Otto D., Gerhard H. Fromm, Hermann Kapp, "Influence of transcortical dc currents on cortical neuronal activity," Experimental neurology, vol.5(6), pp. 436-452, 1962.
    [9] Bindman, Lynn J., O. C. J. Lippold, J. W. T. Redfearn, "The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects.", The Journal of physiology, vol.172(3), p. 369, 1964.
    [10] Purpura, Dominick P., James G. McMurtry, "Intracellular activities and evoked potential changes during polarization of motor cortex.", Journal of neurophysiology, vol.28(1), pp. 166-185, 1965.
    [11] Bindman, Lynn J., O. C. J. Lippold, J. W. T. Redfearn, "Long-lasting changes in the level of the electrical activity of the cerebral cortex produced by polarizing currents.", Nature, vol.196(4854), pp. 584-585, 1962.
    [12] Priori, Alberto, et al, "Polarization of the human motor cortex through the scalp.", Neuroreport, vol.9(10), pp. 2257-2260, 1998.
    [13] Nitsche, Michael A., and Walter Paulus, "Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation." The Journal of physiology, vol.527(3), pp. 633, 2000.
    [14] Nitsche, Michael A., Walter Paulus., "Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans.", Neurology, vol.57(10), pp. 1899-1901, 2001.
    [15] Nitsche, Michael A., et al, "Level of action of cathodal DC polarisation induced inhibition of the human motor cortex.", Clinical Neurophysiology, vol.114(4), pp. 600-604, 2003.
    [16] Fritsch, Brita, et al., "Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning.", Neuron, vol.66(2), pp. 198-204, 2010.
    [17] Monte-Silva, Katia, et al, "Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation.", Brain stimulation , vol.6(3), pp. 424-432, 2013.
    [18] Kadosh, Roi Cohen, et al, "Modulating neuronal activity produces specific and long-lasting changes in numerical competence.", Current Biology, vol.20(22), pp. 2016-2020, 2010.
    [19] Reis, Janine, et al, "Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation.", Proceedings of the National Academy of Sciences, vol.106(5), pp. 1590-1595, 2009.
    [20] Antal, Andrea, et al., "Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans.", Brain stimulation, vol.1(2), pp. 97-105, 2008.
    [21] Ali, Mohsin M., Kristin K. Sellers, and Flavio Fröhlich, "Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance.", Journal of Neuroscience, vol.33(27), pp. 11262-11275, 2013.
    [22] Schlaug, Gottfried, Vijay Renga, and Dinesh Nair., "Transcranial direct current stimulation in stroke recovery.", Archives of neurology, vol.65(12), pp. 1571-1576, 2008.
    [23] Ferrucci, R., et al., "Transcranial direct current stimulation improves recognition memory in Alzheimer disease.", Neurology, vol.71(7), pp. 493-498, 2008.
    [24] Boggio. Paulo S., et al., "Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease." Journal of Neurology, vol.80(4), pp. 444-447, 2009.
    [25] Boggio, Paulo S., Soroush Zaghi, and Felipe Fregni., "Modulation of emotions associated with images of human pain using anodal transcranial direct current stimulation (tDCS)." Neuropsychologia, vol.47(1), pp. 212-217, 2009.
    [26] Bueno, Viviane F., et al., "Mood and cognitive effects of transcranial direct current stimulation in post-stroke depression." Neurocase, vol.17(4), pp. 318-322, 2011.
    [27] Kalu, U. G., et al., "Transcranial direct current stimulation in the treatment of major depression: a meta-analysis.", Psychological medicine, vol.42(9), pp. 1791, 2012.
    [28] Loo, Colleen K., et al., "Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial.", The British Journal of Psychiatry, vol.200(1), pp. 52-59, 2012.
    [29] Fregni, F., et al., "Transient tinnitus suppression induced by repetitive transcranial magnetic stimulation and transcranial direct current stimulation.", European Journal of Neurology, vol.13(9), pp. 996-1001, 2006.
    [30] Boggio, Paulo S., et al, "Modulatory effects of anodal transcranial direct current stimulation on perception and pain thresholds in healthy volunteers.", European journal of neurology, vol.15(10), pp. 1124-1130, 2008.
    [31] Fenton, Bradford W., et al., "A preliminary study of transcranial direct current stimulation for the treatment of refractory chronic pelvic pain.", Brain stimulation, vol.2(2), pp. 103-107, 2009.
    [32] Juan, Chi-Hung, and Neil G. Muggleton, "Brain stimulation and inhibitory control.", Brain Stimulation, vol.5(2), pp. 63-69, 2012.
    [33] Flöel; Agnes, et al, "Noninvasive brain stimulation improves language learning.", Journal of cognitive neuroscience, vol.20(8), pp. 1415-1422, 2008.
    [34] Hsu, Tzu-Yu, et al., "Transcranial direct current stimulation over right posterior parietal cortex changes prestimulus alpha oscillation in visual short-term memory task.", Neuroimage, vol.98, pp. 306-313, 2014.
    [35] Ditye;Thomas, et al., "Modulating behavioral inhibition by tDCS combined with cognitive training.", Experimental brain research, vol.219(3), pp. 363-368, 2012.
    [36] Peterchev, Angel V., et al, "Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices." Brain stimulation, vol.5(4), pp. 435-453, 2012.
    [37] Dayan, Eran, et al. , "Noninvasive brain stimulation: from physiology to network dynamics and back.", Nature neuroscience, vol.16(7), pp. 838-844, 2013.
    [38] Peña, Edgar, et al., "Particle swarm optimization for programming deep brain stimulation arrays." Journal of neural engineering, vol.14(1), pp.016014, 2017.
    [39] Nitsche, Michael A., et al, "Transcranial direct current stimulation: state of the art 2008.", Brain stimulation, vol.1(3), pp. 206-223, 2008.
    [40] Fox, Michael D., et al., "Resting-state networks link invasive and noninvasive brain stimulation across diverse psychiatric and neurological diseases.", Proceedings of the National Academy of Sciences, vol.111(41), pp. E4367-E4375, 2014.
    [41] Moreno-Duarte, Ingrid, et al., "Transcranial electrical stimulation: transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), transcranial pulsed current stimulation (tPCS), and transcranial random noise stimulation (tRNS).", The stimulated brain. Academic Press, pp. 35-59, 2014.
    [42] Bikson, Marom, et al, "Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro.", The Journal of physiology, vol.557(1), pp. 175-190, 2004.
    [43] Wachter, Dorothee, et al, "Transcranial direct current stimulation induces polarity-specific changes of cortical blood perfusion in the rat.", Experimental neurology, vol.227(2), pp. 322-327, 2011.
    [44] Merzagora, Anna C., et al., "Prefrontal hemodynamic changes produced by anodal direct current stimulation.", Neuroimage, vol.49(3), pp. 2304-2310, 2010.
    [45] Palm, Ulrich, et al., "The role of contact media at the skin-electrode interface during transcranial direct current stimulation (tDCS).", Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, vol.7(5), pp. 762-764, 2014.
    [46] Minhas, Preet; Abhishek Datta, and Marom Bikson., "Cutaneous perception during tDCS: role of electrode shape and sponge salinity." Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology, vol.122(4), pp. 637, 2011.
    [47] Kronberg, Greg, and Marom Bikson, "Electrode assembly design for transcranial direct current stimulation: a FEM modeling study.", 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.IEEE, 2012.
    [48] Datta, Abhishek, Marom Bikson, and Felipe Fregni, "Transcranial direct current stimulation in patients with skull defects and skull plates: high-resolution computational FEM study of factors altering cortical current flow." Neuroimage, vol.52(4), pp. 1268-1278, 2010.
    [49] Datta, Abhishek, et al., "Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient.", Brain stimulation, vol.4(3), pp. 169-174, 2011.
    [50] Agnew, William F., and Douglas B. McCreery., "Considerations for safety in the use of extracranial stimulation for motor evoked potentials." Neurosurgery, vol.20(1), pp. 143, 1987.
    [51] Woods, Adam J., et al, "A technical guide to tDCS, and related non-invasive brain stimulation tools.", Clinical neurophysiology, vol.127(2), pp. 1031-1048, 2016.
    [52] Batsikadze, G., et al., "Partially non‐linear stimulation intensity‐dependent effects of direct current stimulation on motor cortex excitability in humans.", The Journal of physiology, vol.591(7), pp. 1987-2000, 2013.
    [53] Goldsworthy, Mitchell R., Julia B. Pitcher, and Michael C. Ridding., "Spaced noninvasive brain stimulation: prospects for inducing long-lasting human cortical plasticity.", Neurorehabilitation and Neural Repair, vol.29(8), pp. 714-721, 2015.
    [54] Csaba Poreisz, Klara Boros, Andrea Antal and Walter Paulus, "Safety Aspects of Transcranial Direct Current Stimulation.", Brain Research Bulletin, vol. 72(4-6), pp. 208-214, 2007.
    [55] 鄭淑娟, "經顱直流電刺激法規及臨床審查.", 當代醫藥法規月刊, vol. 71, pp. 1-7, 2016.
    [56] Paulus, Walter, "Transcranial electrical stimulation (tES–tDCS; tRNS, tACS) methods", Neuropsychological rehabilitation, vol.21(5), pp. 602-617, 2011.
    [57] Thut, Gregor, Philippe Schyns, and Joachim Gross, "Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brainEntrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain", Frontiers in psychology, vol.2, pp. 170, 2011.
    [58] Antal, Andrea, and Walter Paulus, "Transcranial alternating current stimulation (tACS)", Frontiers in human neuroscience, vol.7, pp. 317, 2013.
    [59] Tavakoli, Amir V., and Kyongsik Yun, "Transcranial alternating current stimulation (tACS) mechanisms and protocols", Frontiers in cellular neuroscience, vol.11, pp. 214, 2017.
    [60] Herrmann, Christoph S., et al., "Transcranial alternating current stimulation: a review of the underlying mechanisms and modulation of cognitive processes", Frontiers in human neuroscience, vol.7, pp. 279, 2013.
    [61] Deans, Jacqueline K., Andrew D. Powell, and John GR Jefferys, "Sensitivity of coherent oscillations in rat hippocampus to AC electric fields", The Journal of physiology, vol.583(2), pp. 555-565, 2007.
    [62] Reato, Davide, et al, "Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing", Journal of Neuroscience, vol.30(45), pp. 15067-15079, 2010.
    [63] Helfrich, Randolph F., et al, "Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception", PLoS Biol, vol.12(12), pp. e1002031, 2014.
    [64] Zaehle, Tino, Stefan Rach, and Christoph S. Herrmann., "Transcranial alternating current stimulation enhances individual alpha activity in human EEG", PloS one, vol.5(11), pp. e13766, 2010.
    [65] Polanía, Rafael, et al, "The importance of timing in segregated theta phase-coupling for cognitive performance", Current Biology, vol.22(14), pp. 1314-1318, 2012.
    [66] Zaghi, Soroush, et al. , "Inhibition of motor cortex excitability with 15 Hz transcranial alternating current stimulation (tACS)", Neuroscience letters, vol.479(3), pp. 211-214, 2010.
    [67] Chaieb, Leila, Andrea Antal, and Walter Paulus, "Transcranial alternating current stimulation in the low kHz range increases motor cortex excitability", Restorative neurology and neuroscience, vol.29(3), pp. 167-175, 2011.
    [68] Moliadze, Vera, et al, "Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities", Brain stimulation, vol.5(4), pp. 505-511, 2012.
    [69] Raco, Valerio, et al, "Neurosensory effects of transcranial alternating current stimulation", Brain stimulation, vol.7(6), pp. 823-831, 2014.
    [70] Turi, Zs, et al., "Both the cutaneous sensation and phosphene perception are modulated in a frequency-specific manner during transcranial alternating current stimulation." Restorative neurology and neuroscience, vol.31(3), pp. 275-285, 2013.
    [71] Hopfinger, Joseph B., Jonathan Parsons, and Flavio Fröhlich., "Differential effects of 10-Hz and 40-Hz transcranial alternating current stimulation (tACS) on endogenous versus exogenous attention", Cognitive neuroscience, vol.8(2), pp. 102-111, 2017.
    [72] Riecke, Lars, et al, "4-Hz transcranial alternating current stimulation phase modulates hearing", Brain stimulation, vol.8(4), pp. 777-783, 2015.
    [73] Riecke, Lars, Alexander T. Sack, and Charles E. Schroeder., "Endogenous delta/theta sound-brain phase entrainment accelerates the buildup of auditory streaming", Current Biology, vol.25(24), pp. 3196-3201, 2015.
    [74] Rufener, Katharina S., et al. , "Transcranial Alternating Current Stimulation (tACS) differentially modulates speech perception in young and older adults", Brain Stimulation, vol.9(4), pp. 560-565, 2016.
    [75] Rufener, Katharina S., et al. , "40 Hz-Transcranial alternating current stimulation (tACS) selectively modulates speech perception", International Journal of Psychophysiology, vol.101, pp. 18-24, 2016.
    [76] Moisa, Marius, et al., "Brain network mechanisms underlying motor enhancement by transcranial entrainment of gamma oscillations", Journal of Neuroscience, vol.36(47), pp. 12053-12065, 2016.
    [77] Guerra, Andrea, et al, "Phase dependency of the human primary motor cortex and cholinergic inhibition cancelation during beta tACS", Cerebral Cortex, vol.26(10), pp. 3977-3990, 2016.
    [78] Wach, C., et al, "Effects of 10 Hz and 20 Hz transcranial alternating current stimulation (tACS) on motor functions and motor cortical excitability", Behavioural brain research, vol.241, pp. 1-6, 2013.
    [79] Nitsche, Michael A., et al, "Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human", Journal of cognitive neuroscience, vol.15(4), pp. 619-626, 2003.
    [80] Lustenberger, Caroline, et al, "Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor memory consolidation", Current Biology, vol.26(16), pp. 2127-2136, 2016.
    [81] Wischnewski, Miles, Paul Zerr, and Dennis JLG Schutter, "Effects of theta transcranial alternating current stimulation over the frontal cortex on reversal learning", Brain stimulation, vol.9(5), pp. 705-711, 2016.
    [82] Agharezaee, Mahsa, and Amin Mahnam, "A computational study to evaluate the activation pattern of nerve fibers in response to interferential currents stimulation", Medical & biological engineering & computing, vol.53(8), pp. 713-720, 2015.
    [83] Hutcheon, Bruce, and Yosef Yarom, "Resonance, oscillation and the intrinsic frequency preferences of neurons", Trends in neurosciences, vol.23(5), pp. 216-222, 2000.
    [84] Mahnam, Amin, Hassan Yazdanian, and Mohsen Mosayebi Samani., "Comprehensive study of Howland circuit with non-ideal components to design high performance current pumps," Measurement, vol.82, pp. 94-104, 2016.
    [85] D. Bennett, "NaCl doping and the conductivity of agar phantoms", Materials Science and Engineering:C, vol.31(2), pp. 494-4998, 2011.
    [86] Pfurtscheller, G., "Functional brain imaging based on ERD/ERS", Vision research, vol.41(10-11), pp. 1257-1260, 2001.

    QR CODE
    :::