跳到主要內容

簡易檢索 / 詳目顯示

研究生: 程珊珊
Shan-Shan Chen
論文名稱: 沸石晶核的製備與排列
指導教授: 蔣孝澈
A.S.T. Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 67
中文關鍵詞: 沸石
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的在於嘗試利用納米級MFI沸石結晶來取代中孔氧化矽的非晶形孔壁,期望合成出同時具有微孔─中孔結構的複合分子篩,以增進產物利用的價值。
    在實驗合成的步驟上,先合成出納米級沸石結晶,再利用這些粒子排列出中孔的結構。但這個方法會合成出混相結構的產物(即MFI結晶和中孔氧化矽非晶相結構是同時存在的兩相),可能是因沸石結晶太大,沒有辦法和界面活性劑排列成中孔結構。Ravishankar於1999年發表的文獻中提到,在透明澄清的MFI precursor中存在有許多小粒子 — nanoslab;這些nanoslab具有部份的MFI結構,其大小為1.3*4*4nm。因此,我們接下來嘗試直接在MFI precursor中加入界面活性劑,希望溶液中的nanoslab可以排列出中孔結構。
    我們發現當直接採用MFI precursor做反應物時,無法由XRD觀察到MFI結構;而在中孔結構方面,可以在小角度的地方觀察到似乎有排列的情況出現。由氮氣恆溫吸附結果,發現產物同時具有微孔(∼5.6A)及中孔(∼20A)兩種孔洞分佈。而在TEM的結果中,發現產物會在局部範圍(200nm*200nm)內做層狀排列。最後我們對於產物的水熱穩定性做了測試,發現在100℃下經過水熱24小時後,產物的中孔排列消失。


    目錄 中文摘要 i 英文摘要 ii 目錄 iii 圖目錄 v 表目錄 vii 第一章 緒論 ……………………………………………………..1 1.1MFI 沸石簡介 ……………………………………………..3 1.2中孔氧化矽簡介 …………………………………………..5 1.3複合分子篩的相關研究文獻 ……………………………..8 1.4研究方法 ………………………………………………….12 第二章 納米沸石懸浮液的製備 ……………………………….13 2.1 製備納米沸石懸浮液的相關研究 ……………………….13 2.2 納米級沸石懸浮液的合成 ……………………………...16 2.2.1 納米級沸石懸浮液的製備 ……………………… ..16 2.2.2 沸石懸浮粒子的分離 ……………………………….17 2.3 樣品性質的分析 ………………………………………….20 2.3.1 XRD分析 ………………………………..…………..20 2.3.2 氮氣恆溫吸附分析 ………………………….……..23 2.3.3 SEM分析 ………………………………..…………..26 2.3.4 TEM分析 ……………………………………………..27 2.3.5 傅利葉紅外線光譜分析 …………………………….28 2.4 結果討論 …………………………………………………..30 第三章 沸石晶核製備及排列 33 3.1 Nanoslab的概念 33 3.2 具結晶性中孔氧化矽製備 35 3.3 樣品性質的分析 …………………………………………..38 3.3.1 XRD分析 ……………..………………..…………..38 3.3.2 氮氣恆溫吸附分析 …….………………….……. ..42 3.3.3 SEM分析 ……………………………… .……….…..45 3.3.4 TEM分析 ………………………………………………46 3.3.5 傅利葉紅外線光譜分析 ……………………………..46 3.3.6 熱重分析 ……………………………………………..47 3.4 結果討論 …………………………………………………..49 第四章 結論 52 4-1 實驗結果比較 52 4-2 檢討與建議 56 4-3 結語 61 參考文獻 62 附錄A 孔洞分佈分析方法比較………………………………...65 附錄B 儀器與藥品附錄 67 圖目錄 圖1-1 MFI結構圖 3 圖1-2 MFI結構的孔洞示意圖 4 圖1-3 M41S系列中孔結構簡圖 5 圖1-4 Beck等人提出的MCM-41形成機制 6 圖1-5 Chen等人提出的MCM-41形成機制 6 圖1-6 Monnier等人提出的MCM-41形成機制 7 圖1-7 再結晶時固相結構間相轉移示意圖 10 圖 2-1 TPAOH與TEOS水解時溶液pH值變化圖 16 圖 2-2 樣品編號示意圖 18 圖 2-3 樣品製備流程圖 19 圖 2-4 未鍛燒樣品XRD圖 21 圖 2-5 鍛燒後樣品XRD圖 22 圖 2-6 樣品氮氣恆溫吸附曲線圖 24 圖 2-7 樣品的

    1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, “Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism,” Nature, 1992, 359, 710-712.
    2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, “A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates,” J. Am. Chem. Soc., 1992, 114, 10834-10843.
    3. Qisheng Huo, David I. Margolese, Ulrike Clesla, Pingyun Feng, Thurman E. Gier, Peter Sieger, Rosa Leon, Pierre M. Petroff, Ferdi Schűth and Galen D. Stucky, “Generalized Synthesis of Periodic Surfactant / Inorganic Composite Materials,” Nature, 1994, 368, 317-321.
    4. Narayan K. Raman, Mark T. Anderson and C. Jeffrey Brinker, “Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas,” Chem. Mater., 1996, 8, 1682-1701.
    5. Jackie Y. Ying, Christian P. Mehnert and Michael S. Wong, “Synthesis and Applications of Surpramolecular-Templated Mesoporous Materials,” Angew. Chem. Int. Ed., 1999, 38, 56-77.
    6. Michael Grűn, Klaus K. Unger, Akihiko Matsumoto and Kazuo Tsutsumi, “Novel Pathways for the Preparation of Mesoporous MCM-41 Materials : Control of Porosity and Morphology,” Microporous and Mesoporous Materials, 1999, 27, 207-216.
    7. Ulrike Ciesla and Ferdi Schűth, “Ordered Mesoporous Materials,” Microporous and Mesoporous Materials, 1999, 27, 131-149.
    8. Lesley Smart and Elaine Moore, 1st ed. 1992, chap. 5.
    9. J. C. Vartuli, C. T. Kresge, W. J. Roth, S. B. MuCullen, J. S. Beck, K. D. Schmitt, M. E. Leonowicz, J. D. Lutner and E. W. Sheppard, Advanced Catalysts and Nanostructured Materials : Modern Synthesis Methods (Ed. : W. R. Moser), Academic Press, New York, 1996, pp.1-19.
    10. C. —Y. Chen, S. L. Burkett, H. —X. Li, M. E. Davis, Microporous Mater., 2, 1993, 27.
    11. A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B. F. Chmelka, Science, 1993, 261, 1299-1303.
    12. Xiaoyin Chen, Limin Huang and Quanzhi Li, “Hydrothermal Transformation and Characterization of Porous Silica Templated by Surfactants,” J. Phys. Chem. B, 1997, 101, 8460-8467.
    13. Arne Karlsson, Michael Stocker and Ralf Schmidt, “Attempts of Structuring the Pore Walls of Mesoporous MCM-41 Materials,” 12th International Zeolite Conference. Baltimore, Maryland, USA, July 5-10, 1998.
    14. Arne Karlsson, Michael Stocker and Ralf Schmidt, “Composites of Micro- and Mesoporous Materials : Simultaneous Syntheses of MFI / MCM-41 Like Phases by a Mixed Template approach,” Microporous and Mesoporous Materials, 1999, 27, 181-192.
    15. Brian T. Holland, Lloyd Abrams and Andreas Stein, “Dual Templating of Macroporous Silicates with Zeolitic Microporous Frameworks,” J. Am. Chem. Soc., 1999, 121, 4308-4309.
    16. Limin Huang, Wanping Guo, Peng Deng, Zhiyuan Xue and Quanzhi Li, “Investigation of Synthesizing MCM-41 / ZSM-5 Composites,” J. Phys. Chem. B 2000, 104, 2817-2823.
    17. Peidong Yang, Dongyuan Zhao, David I. Margolese, Bradley F. Chmelka and Galen D. Stucky, “Generalized Syntheses of Large-Pore Mesoporous Metal Oxides with Semicrystalline Frameworks,” Nature, 1998, 396, 152-155
    18. B. J. Schoeman, J. Sterte and J. -E. Otterstedt, “Colloidal Zeolite Suspensions,” Zeolites, 1994, 14, 110-116.
    19. A. E. Persson, B. J. Schoeman, J. Sterte and J. -E. Otterstedt, “The Synthesis of Discrete Colloidal Particles of TPA-silicate-1,” Zeolites, 1994, 14, 557-567.
    20. Brian J. Schoeman, “A Spectroscopic Study of the Initial Stage in the Crystallization of TPA-silicalite from Clear Solutions,” Progress in Zeolites and Microporous Materials, 1997, 105, 647-654.
    21. C. S. Tsay and A. S. T. Chiang, “The Synthesis of Colloidal Zeolite TPA-silicalite-1,” Microporous and Mesoporous Materials, 1998, 26, 89-99.
    22. Michal Kruk and Mietek Jaroniec, “Characterization of Highly Ordered MCM-41 Silicas Using X-ray Diffraction and Nitrogen Adsorption,” Langmuir, 1999, 15, 5279-5284.
    23. Mietek Jaroniec and Michal Kruk, “Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas,” Langmuir, 1999, 15, 5410-5413.
    24. Robert W. Corkery and Barry W. Ninham, “Low-temperature Synthesis and Characterization of a Stable Colloidal TPA-silicalite-1 Suspension,” Zeolites, 1997, 18, 379-386.
    25. Raman Ravishankar, Christine Kirschhock, Brian J. Schoeman, Peter Vanoppen, Piet J. Grobet, Sebastian Storck, Wilhelm F. Maier, Johan. A. Martens, Frans C. De Schryver and Pierre A. Jacobs, “Physicochemical Characterization of Silicalite-1 Nanophase Material,” J. Phys. Chem. B, 1998, 102, 2633-2639.
    26. Raman Ravishankar, Christine E. A. Kirschhock, Peter-Paul Knops-Gerrits, Eddy J. P. Feijen, Piet J. Grobet, Peter Vanoppen, Frans C. De Schryver, Gerhard Miehe, Hartmut Fuess, Brian J. Schoeman, Pierre A. Jacobs and Johan. A. Martens, “Characterization of Nanosized Material Extracted from Clear Suspensions for MFI Zeolite Synthesis,” J. Phys. Chem. B, 1999, 103, 4960-4964.
    27. Christine E. A. Kirschhock, Raman Ravishankar, Frederik Verspeurt, Piet J. Grobet, Pierre A. Jacobs and Johan Martens, “Identification of Precursor Species in the Formation of MFI Zeolite in the TPAOH TEOS H2O System,” J. Phys. Chem. B, 1999, 103, 4965-4971.
    28. Christine E. A. Kirschhock, Raman Ravishankar, L. Van Looveren, P. A. Jacobs and J. A. Martens, “Mechanism of Transformation of Precursors into Nanoslabs in the Early Stages of MFI and MEL Zeolite Formation from TPAOH-TEOS-H2O and TBAOH-TEOS-H2O Mixtures,” J. Phys. Chem. B, 1999, 103, 4972-4978.
    29. Christine E. A. Kirschhock, Raman Ravishankar, P. A. Jacobs and J. A. Martens, “Aggregation Mechanism of Nanoslabs with Zeolite MFI-Type Structure,” J. Phys. Chem. B, 1999, 103, 11021-11027.

    QR CODE
    :::