| 研究生: |
王毓鍵 Yu-Chien Wang |
|---|---|
| 論文名稱: |
選擇權評價方法於人壽保險公司清償能力預警系統建立之運用 The Application of Option Valuation Method in Establishing the Warning System of Life Insurance Company Solvency |
| 指導教授: |
張傳章
Chuang-Chang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 財務金融學系在職專班 Executive Master of Finance |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 清償能力 |
| 外文關鍵詞: | Solvency |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於台灣保險監理法令愈趨嚴謹之要求,及逐步與國際相關會計制度(IFRS4)與風險管理制度(SolvencyⅡ)之接軌,台灣的人壽保險業經營正面臨著極大挑戰。由於保險商品定價、精算簽證、清償能力預警到整體風險管理等各個作業分由不同部門掌管,其使用管理方法的差異,除可能造成各部門間溝通上之障礙,亦可能使得保險經營無法達到最大效益,因此本文嘗試以選擇權之評價方法建立可與精算簽證制度、國際會計準則(IFRS4)及歐盟SolvencyⅡ具有相同理論基礎之清償能力預警方法。
本文所採用之研究方法係以美式選擇權評價理論架構之觀點切入,將人壽保險公司之資產部位視為一連動標的債券並將其導入美選擇權之評價方法中,其中以最小平方蒙地卡羅法(Least-Squares Monte Carlo Method)、單因子隨機利率模型及多變數模擬方法為建構清償能力預警系統之基礎。本文最後並提供於建構過程中用以建立程式碼之有效流程。
There are more challenges of operating in the life insurance industry because of the more strict requirements in overseeing, the developments in the account system such as “IFRS4” and the risk management system such as “Solvency Ⅱ”. For a life insurance company, the various departments are responsible for policies valuation, preparation of actuarial overseeing documentation, early warning of solvency and risk management in using the different methods, thus to communicate with each other and to make the largest profit are difficult. In this article, to establish the early warning system of solvency which is based on the equivalent theoretical methods with preparation of actuarial overseeing documentation, “IFRS4” and “Solvency Ⅱ” is the principal attempt.
The research method in this article is based on how to take the valuation of American-Option. First, the assets of a life insurance company are regarded as gearing sign bond. Second, Least-Squares Monte Carlo Method, single factor stochastic interest rate model and multi-variable simulation procedure are used to construct the early warning system of solvency. Finally, the efficient processes for coding is supplied.
英文文獻
Abramowitz, W. and I. Stegun., Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical
Tables, New York: Dover Publications., pp. 773~802., 1972
Boyle, P., “Options:A Monte Carlo Approach”, Journal of
Financial Economics, Vol. 4, pp.323~338., 1977
Chan, Karolyi, Longstaff and Sanders,”An Empirical
Comparison of Alternative Models of the Short-Term
Interest Rate”, Journal of Finance, Vol.47, pp.1209-
1227.,1992
Cox, J.C., J.E. Ingersoll, and Ross, S.A.,”A Theory of
the Term Structure of Interest Rates”,Econometrica,
Vol. 53, pp.385-407., 1985
Longstaff, F.A., E.S. Schwartz, “Valuing American Options
by Simulation:A Simple Least-Squares Approach”, The
Review of Financial Studies 14, No. 1, pp. 113~147., 2001
Merton, R. C.,”Theory of Rational Option Pricing”, Bell
Journal of Economics and Management Science, Vol.4,
pp.141-183., 1973
Moreno, M., J.F. Navas, “On the Robustness of Least-
Squares Monte Carlo(LSM) for Pricing American
Derivatives”, Review of Derivatives Research 6, pp.
107~128.,2003
Paul Glasserman, Monte Carlo Methods in Financial
Engineering, Springer-Verlag New York, Inc., New York,,
pp108-134., 2004
Tilley, J.A. , “Valuing American options in a path
simulation model”, Transactions of the Society of
Actuaries, No.45, pp.83~104., 1993
Vasicek , O., “An Equilibrium Characterization of the
Term Structure of Interest Rates”, Journal of Financial
Economics, Vol.5,pp177-188., 1977
中文文獻
周國端等5人,”RBC相關議題之研究”,行政院金融監督管理委員
會94年度委託研究計畫, 2005
張傳章,期貨與選擇權,二版,雙葉書廊出版,台北市,
pp.402~411,2008
曾士軒,「多標的資產連動債券評價與分析」,國立中山大學,碩
士論文,2003
蔡政憲等5人,”SolvencyⅡ準備金方法之研究”,財團法人保險事
業中心研究計畫,2007
林麗芬,「利率隨機性在年金保險上之應用」,保險專刊,
Vol.47, pp.182~210.,1997
林麗芬、王鈞,「壽險傳統準備金提存與公平價值準備金之探
討」,保險實務與制度,Vol.4, No.1, pp.1-21.,2005