| 研究生: |
謝崇偉 Chong-Wei Sie |
|---|---|
| 論文名稱: |
雙二噻吩環戊烷衍生物的合成與性質探討 |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 二噻吩環戊烷 、低能隙 |
| 外文關鍵詞: | cyclopentadithiophene, low band-gap |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
導電高分子由於具有低成本,可低溫製成及可溶劑加工等優點,故在應用上備受矚目。近年來以噻吩(thiophene)為主的低能隙高分子更是主要的研究對象之一。本實驗目的是在Δ4,4´-dicyclopenta[2,1-b:
3,4-b´]dithiophene(DCPDT;DCP)單體上,於不同位置上修飾長碳鏈取代基提供高分子溶解度,主要合成出四種單體: 2,6-dioctyl-
Δ4,4´-dicyclopenta[2,1-b:3,4-b´]dithiophene (DODCP)、2,2´-di- octyl-Δ4,4´-di-cyclopenta[2,1-b:3,4-b´]di-thiophene(cis- DODCP)、2,6´-dioctyl-Δ4,4´-dicyclopenta[2,1-b:3,4-b´]dithio -phene(trans-DODCP)、及2,2´-ditetradecyl-Δ4,4´-dicyclo- penta[2,1-b:3,4-b´] dithiophene (cis-DTDDCP),探討取代基位置不同對聚合所得高分子之能隙的影響。實驗發現化學聚合所得高分子不溶於一般有機溶劑,故無法做成薄膜做以探討不同結構對能隙的影響,但由IR證實確有合成出高分子。而由電化學聚合高分子膜的UV圖發現,三種高分子膜的能隙皆小於1.5 eV,其中PDODCP能隙小於1.3 eV。可知影響高分子能隙的原因除了取代基位置的立體障礙效應(steric effect),主鏈結構的不同也是影響因素之一。
Abstract
Low band-gap conjugated polymers have attracted a great attention recently due to their high intrinsic conductivity as well as the optical transparent in the visible light in the doped state. The structure of lots of low band-gap polymer is based on polythiophenes because of their high environmental stability, superior conductivity, processability, and easy for structure modification.Δ4,4´-dicyclopenta[2,1-b:3,4-b´] dithiophene (DCPDT) is one of the monomers for low band-gap polymers. By adding the alkyl substitute groups at different positions to increase the solubility, four derivatives: 2,6-dioctyl-Δ4,4´-dicyclopenta- [2,1-b:3,4-b´] dithiophene (DODCP), cis-2,2´- dioctyl-Δ4,4´-dicyclopenta[2,1-b:3,4-b´] dithiophene (cis-DODCP), trans-2,6´-dioctyl-Δ4,4´-dicyclopenta [2,1-b:
3,4-b´]dithiophene (trans-DODCP), and 2,2´-ditetradecyl-Δ4,4´ -dicyclo
-penta[2,1-b:3,4-b´]-dithiophene (cis-DTDDCP) were synthesized. The corresponding polymers prepared by chemical polymerization in FeCl3/CHCl3 were not soluble in organic solvents. Therefore, polymer films were obtained from electrochemical polymerization using LiClO4/CH3CN as electrolyte solution in a typical three-electrode cell. The optical data of the polymer films showed that PDODCP has the lowest band gap (< Eg=1.3 eV) for all polymer films prepared in this study. It is found that band-gap of polymer is affected by the steric effect of substitute groups and main-chain configurations of the polymers.
參考文獻
1. J. Roncali,, Chem. Rev. 1992, 92, 711
2. K. Hyodo, Electrochem Acta 1994, 39, 265
3. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, Nature 1992, 357, 477
4. K. Yoshio, Y. Manda, H. Takahashi, Y. Nishioka, T. Kawai, M. Ohmori J. Apply. Phys. 1990, 68, 5976
5. R. D. McCullough, R. D. Lowe, S. Tristramnagle, S. P. Williams, M. Yayaraman, J. Am. Chem. Soc. 1993, 26, 4457
6. T. Osaka, S. Komada, K. Fujihana, N. Odamoto, N. Kanedo, Chem. Lett. 1995, 1023
7. A. Angli, Gazz. Chim. Ital. 1916, 46, II279
8. A. Dall Olio, G. Dascola, V. Varacca, V. Bocchi, Acad. Sci. Ser. 1968, 433, C267
9. Chen Tian-An, Wu Xiaoming, R. D. Rieke, J. Am. Chem. Soc. 1995, 117, 233-244
10. H. Naarmann, “Structure and conductivity of organic polymers”, Angew. Chem. Int. Ed. 1969, 8, 915
11. H. Shiradawa, S. Ikeda, Polym. J. 1971, 2, 231
12. C. K. Chiang, C. R. Fincher Jr, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098
13. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539-541
14. D. Braun, A. J. Heeger, Appl. Phys. Lett. 1990, 58, 1982
15. K. Susan, E. S. Vanderkam, J. S. Gawalt, A. B. Bocarsly, Langmuir 1999, 15, 6598-6600
16. M. G. Kanatzids, “Conductive polymers”, C&EN, 1990, 3, 36
17. 李進昌, 1994, 國立清華大學化學工程研究所博士論文
18. 洪添燦, 1998, 國立清華大學化學工程研究所博士論文
19. C.Kittel, “Introduction to Solid State Physics”. 6th ed., John Wiley & Son, Singapore, 1986,
20. K. Y. Jen, G. G. Miller, R. L. Elsenbaumer, J. Chem. Soc.,Chem. Commun. 1986, 1346.
21. S. D. D. V. Rughooputh, M. Nowak, S. Hotta, A. J. Heeger, F. Wudl, Synth. Met. 1987, 21, 41.
22. 張淑美, 科學月刊 2001,第三十二卷第二期, 108
23. http://www.nobel.se/chemistry/laureates/2000/public.html
24. V. H. Houlding, A. Hahata, J. T. Yardley, R. L. Elsenbaumer, Chem. Mater. 1990, 2, 169.
25. T. Osaka, S. Komada, K. Fujihana, N. Okamoto, N. Kaneko, J. Electrochem. Soc. 1997, 114, 743.
26. D. R. Rosseinsky, R. J. Mortimer, Adv. Mater. 2001, 13,783.
27. M. Pomerantz, in Handbook of Conducting Polymers (Eds: T. A. Skotheim, R. L. Elsenbaumer, J. R. Reynolds), 2nd ed., Marcel Dekker, New York 1998, Ch. 5.
28. 陳丁洲, 2004, 國立中央大學化學研究所碩士論文, p22
29. 趙家錚, 2004, 國立中央大學化學研究所碩士論文, p20-21
30. A. J. Epstein, J. M. Ginder, R. W. Bigelow, A. G. MacDiamid, Synth. Met. 1987, 18, 303.
31. Zhenan Bao, Andrew J. Lovinger, Appl. Phys. Lett. 1996, 69, 26.
32. 麥啃錫季刊, 2002年第一季
33. Wenjie Li, *Howard E. Katz, Andrew J. Lovinger, Chem. Mater. 1999, 11, 458-265.
34. 圖解電子回路, 稻見辰夫 著, 葉隆吉 審訂, 世茂出版社
35. (a) H. Sirringhaus, N. Tessler, R. H. Friend, Science 1998, 280, 1741.
(b) http://www.itri.org.tw/chi/news_events/feature/2003/fe-0920915
36. J. P. Ferraris, T. L. Lambert, J. Chem. Soc., Chem. Commun. 1991, 1286.
37. M. Kobayashi, N. Colaneri, M. Boysel, F. Wudl, A. J. Heeger, J. Org. Chem. 1984, 49, 3382
38. M. Kertesz, Y. S. Lee, Synth. Met. 1989, 28, C545
39. J. M. Toussaint, J. L. Bredas, Macromolecules 1993, 26, 5240.
40. M. Baumgarten, K. H. Koch, K. Mullen, J. Am. Chem. Soc. 1994, 116, 7341.
41. R. Wegner, N. Beye, E. Fanghanel, U. Scherer, R. Wirschem, K. Mullen, 1993, 53, 353
42. T. W. Brockmann, J. M. Tour, J. Am. Chem. Soc.,1994, 116, 205.
43. J. M. Tousaint, B. Themans, J. M. Andre, J. L. Bredas, Synth. Met. 1989, 28, C205
44. J. Kurti, P. R. Suja’n, M. Kdtesz, J. Am. Chem. Soc. 1991, 113, 9865
45. M. V. Lakshmikantham, D. Lorcy, C. S. Kelley, X. L. Wu, J. P. Parakka, R. M. Metzger, M. P. Cava, Adv. Mater. 1993, 5, 723.
46. T. L. Lambert, J. P. Ferraris, J. Chem. Soc., Chem. Commun. 1991, 752
47. E. E. Havinga, T. W. Hoeve, H. Wynberg, Polym. Bull. 1992, 29, 119.
48. S. Yanagida, G.K.R. Senadeera, K. Nakamura, T. Kitamura, Y. Wada, Journal of Photochemistry and Photobiology A: Chemistry 166 (2004) 75-80
49. Christoph Winder, Niyazi Serdar Sariciftci, J. Mater. Chem., 2004, 14, 1077-1086
50. A. M. McDonagh, S. R, Bayly, D. J. Riley, M. D. Ward, J. A. McCleverty, M. A. Cowin, C. N. Morgan, R. Varrazza, R. V. Penty,I. H. White, Chem. Mater. 2000, 12, 2523.
51. (a)P. Chandrasekhar, G. C. Birur, P. Stevens, S. Rawel, E. A. Pierson, K. L. Miller, Synth. Met. 2001, 119, 293.
(b)P. Chandrasekhar, US Patent 5995273, 1999
52. John D. Tovar, Aimee Rose, Timothy M. Swager, J. Am. Chem. Soc. 2002, 124, 7762-7769.
53. D. Tourillon, F. Garnier, J. Electroanal. Chem. 1982, 135, 173-178.
54. H. Brisset, C. Thobie-Gauthier, A. Gorgues, M. Jubault, J. Roncali, J. Chem. Soc., Chem. Commun. 1994, 1305.
55. M. Boman, D. Stafstrom, Synth. Met. 55-57, 1993, 4616-4619.
56. P. A. Christensen,A. Hamnett, A. R. Hillman, M. J. Swann, J. Chem. Soc. 1993, 89, 921.
57. (a) J. Roncali, Chem. Rev. 1992, 92, 711. (b) F. Chen, P. G. Metha, L. Takiff, R. D. McCullough, J. Mater. Chem. 1996, 6, 1763. (c) S. A. Chen, C. C. Tsai, Macromolecules 1995, 28, 7525.
58. (a) D. Braum, G. Gustafsson, D. McBranch, A. G. Heeger, J. Appl. Phys. 1992, 72, 564. (b) F. Chen, P. G. Metha, L. Takiff, R. D. McCullough, J. Mater. Chem. 1996, 6, 1763.
59. (a) A. W. Gigli, G. Barbarella, L. Favaretto, F. Cacialli, R. Cingolani, Appl. Phys. Lett. 1999, 75, 439. (b) T. Granlund, M. Theander, M. Berggren, M. R. Andersson, A. Ruzeckas, V. Bjork, M. Granstrom, O. Inganas, Chem. Phys. Lett. 1998, 288, 879. (c) O. Inganas, T. Granlund, M. Theander, M. Berggren, M. R. Andersson, A. Ruzdckas, Vsundstrom, Opt. Mater. 1998, 9, 104. (d) E. Naudin, H. A. Ho, M. A. Bonin, L. Breau, D. Be’langer, Macromolecules 2002, 35, 4983-4987
60. (a) J. Pei, W. L. Yu, W. Huang, A. J. Heeger, Macromolecule 2000, 33, 2462. (b) J. Pei, W. L. Yu, W. Huang, A. J. Heeger, Macromolecule 2001, 34, 7241-7248. (c) J. Pei, W. L. Yu, W. Huang, A. J. Heeger, Synth. Met. 1999, 105, 43. (d) J. Pei, W. L. Yu, W. Huang, A. J. Heeger, Chem. Commun. 2000, 1631. (e) Y. Li, S. Holdcroft, Macromolecules 2002, 35, 6900-6906
61. M. Pomerantz, X. Gu, Macromolecules 2001, 34,1817-1822
62. H. Meng, F. Wudl, Macromolecules 2001, 34, 1810-1816
63. D. M. Welsh, L. J. Kloeppner, L. Madrigal, M. R. Pinto, B. C. Thompson, K. S. Schanze, K. A. Aboud, D. Powell, J. R. Reynolds, Macromolecules 2002, 35, 6517-6525.
64. A. Kraak, A. D. Wiersema, P. Jordens, Hans Wynberg, Tetrahedron 1967, 24, 3381-3398.
65. Kavithaa Loganathan, Eduardo G. Cammisa, Brent D. Myron, Peter G. Pickup, Chem. Mater. 2003, 15, 1918-1923.
66. R. Beyer, M. Kalaji, D. M. Taylor, Synth. Met. 1992, 92, 25.
67. Philippe Lucas, Naima El Mehdi, Hoang Anh Ho, Synthesis 2000, 9, 1253.
68. Jian Pei, Wang-Lin Yu, Jing Ni, Wee-Hing Lai, Wei Huang, Alan J. Heeger, Macromolecules 2001, 34, 7241-7248.
69. Shu Yoshida, Masanori Fujii, Yoshio Aso, Tetsuo Otsubo, Fumio Ogura, J. Org. Chem. 1994, 59, 3077-3081.
70. K.Peter C. Vollhardt, Neil E. Schore, Organic Chemistry, 3rd ed., W. H. Freeman and Company, New York, p446.
71. G. Zotti, G. Schiavon, A. Berlin, G. Fontana, G. Pagani, Macromolecules, 1994, 27, 1938
72. Jean Roncali, Chem. Rev., 1997, 97, 173-205.
73. Anna Berlin, Alberto Zaneli, Chem. Mater. 2004, 16, 3667-3676.
74. G. J. Heeres , H. Wynberg, Tetrahedron. 1972, 28, 5327-5246.