跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉承霖
Cheng- Lin Yeh
論文名稱: 沖積扇坡度與水砂比關係之實驗探討
指導教授: 周憲德
Hsien-Ter Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 62
中文關鍵詞: 沖積扇前堆水砂比坡度
外文關鍵詞: Progradation, Water-to-sediment ratio, Fan Slope, Shields number
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水砂比的變化會影響沖積扇的坡度,本文以不同實驗探討沖積扇在不同水砂
    比情況下的坡面變化。90 度沖積扇實驗以細砂為實驗顆粒,上游條件分為清水沖
    刷及高含砂水流兩種為一個供給循環。沖積扇在高含砂水流階段有扇面成長(前堆
    過程),其扇之坡度與水砂比成負相關,未經高含砂水流所覆蓋之扇面,其渠寬小
    於被高含砂水流覆蓋扇面後之渠寬。四種實驗顆粒(細砂、粗砂、白色 PVC 顆粒
    和褐色細磨石)在不同水砂比所對應之渠道坡度,均顯示渠道之坡度與水砂比成負
    相關,本文並求得一無因次之坡度與水砂比之關係式。三種顆粒(粗砂、白色 PVC
    顆粒和褐色細磨石)所得之無因次化之單寬輸砂量 qs
    *、無因次單寬水流功率 ω
    *及
    Shields number Θ 三者均呈現正相關之關係。


    The slope of an alluvial fan is mainly controlled by the water-to-sediment ratio of
    the feeding channel. The fan incision and progradation processes on alluvial fans under
    different water-to-sediment ratio conditions are experimentally explored in this study.
    Fan slopes for different particles and discharges were analyzed by image analysis with
    a camera and four laser beams. The equilibrium channel slopes as a funcion of the waterto-sediment ratios were obtained for four dfferent particles (fine sand, coarse sand, white
    PVC beads, and brown mill stone), and an unified trend in dimensionless form agrees
    well with experimental data. The relationships among the dimensionless unit-width
    sediment discharge rate (qs
    *
    ), dimensionless unit-width stream power (ω*
    ), and Shields
    number (Θ) all depict positive correlations.

    摘要 ................................................................................................................................. i abstract............................................................................................................................ ii 致謝 ............................................................................................................................... iii 目錄 ............................................................................................................................... iv 圖目錄 ........................................................................................................................... vi 表目錄 ......................................................................................................................... viii 符號表 ........................................................................................................................... ix 第一章 緒論 .................................................................................................................1 1.1 前言....................................................................................................................1 1.2 研究動機............................................................................................................1 1.3 研究內容及架構................................................................................................1 第二章 文獻回顧 .........................................................................................................3 2.1 沖積扇定義........................................................................................................3 2.2 沖積扇的演變....................................................................................................3 2.3 土石流扇與洪水扇............................................................................................4 2.4 沖積扇實驗........................................................................................................7 2.5 單寬水流功率 ω................................................................................................9 2.6 無因次單寬輸砂量 Φ 及 Shields number Θ.....................................................9 第三章 實驗設置與研究方法...................................................................................10 3.1 水砂比沖積扇實驗..........................................................................................10 3.2 水砂比渠道坡度實驗配置說明......................................................................11 3.3 實驗顆粒材料性質..........................................................................................14 3.4 顆粒粒徑分析..................................................................................................15 3.5 顆粒孔隙率實驗..............................................................................................15 v 3.6 顆粒密度實驗..................................................................................................15 3.7 顆粒二維安息角..............................................................................................16 3.8 供砂轉接環......................................................................................................17 3.9 雷射高程標定裝置..........................................................................................18 3.10 影像錄製設備與分析方法............................................................................19 3.11 疊圖分析........................................................................................................20 3.12 不同高程下對應其水平距離之修正............................................................21 3.13 實驗量測方法...............................................................................................22 第四章 實驗數據與結果...........................................................................................24 4.1 水砂比沖積扇實驗..........................................................................................24 4.2 水砂比渠道坡度實驗......................................................................................33 4.3 單寬水流功率 ω..............................................................................................39 4.4 Shields number Θ.............................................................................................39 4.5 無因次單寬水流功率 ω * .................................................................................40 4.6 無因次單寬供砂量 qs * ....................................................................................40 第五章 結論與建議 ...................................................................................................46 5.1 結論..................................................................................................................46 5.2 建議..................................................................................................................47 第六章 參考文獻 .......................................................................................................48

    1. 林辰翰(2022),「以實驗探討坡度及流量對沖積扇開析過程之影響」,碩士論
    文,國立中央大學土木工程研究所,中壢。
    2. Chou, HT., Lee, CF. Falling process of a rectangular granular step. Granular
    Matter 13, 39–51 (2011). https://doi.org/10.1007/s10035-010-0221-8
    3. de Haas, T., Ventra, D., Carbonneau, P. E., & Kleinhans, M. G. (2014). Debrisflow dominance of alluvial fans masked by runoff reworking and weathering.
    Geomorphology, 217, 165–181.
    4. de Haas, T., Kleinhans, M. G., Carbonneau, P. E., Rubensdotter, L., & Hauber, E.
    (2015). Surface morphology of fans in the high-Arctic periglacial environment of
    Svalbard: Controls and processes. Earth-Science Reviews, 146, 163–182.
    5. de Haas, T., A.L. Densmore, M. Stoffel, H. Suwa, F. Imaizumi, J.A. BallesterosCánovas, T. Wasklewicz,Avulsions and the spatio-temporal evolution of debrisflow fans,Earth-Science Reviews,Volume 177,(2018),Pages 53-75,ISSN 0012-
    8252,https://doi.org/10.1016/j.earscirev.2017.11.007.(https://www.sciencedirect.c
    om/science/article/pii/S0012825217302465)
    6. de Haas, T., Kruijt, A., and Densmore, A. L. (2018) Effects of debris-flow
    magnitude–frequency distribution on avulsions and fan development. Earth Surf.
    Process. Landforms, 43: 2779– 2793. https://doi.org/10.1002/esp.4432.
    7. de Haas, T., Densmore, A. L., den Hond, T., & Cox, N. J. (2019). Fan-surface
    evidence for debris-flow avulsion controls and probabilities, Saline Valley,
    California. Journal of Geophysical Research: Earth Surface, 124, 1118–1138.
    https://doi. org/10.1029/2018JF004815
    8. Densmore, A. L., de Haas, T., McArdell, B., & Schuerch, P. (2019). Making sense
    49
    of avulsions on debris-flow fans. In J. W. Kean, J. A. Coe, P. M. Santi, & B. K.
    Guillen (Eds.), Association of environmental and engineering geologists special
    publication: Vol. 28. Debris-flow hazards mitigation: mechanics, monitoring,
    modeling, and assessment (pp. 637-644). https://doi.org/10.25676/11124/173161
    9. Huang, H. Q. (2010), Reformulation of the bed load equation of Meyer‐Peter and
    Müller in light of the linearity theory for alluvial channel flow, Water Resour.
    Res., 46, W09533, doi:10.1029/2009WR008974.
    10. Reitz, M. D., and D. J. Jerolmack (2012), Experimental alluvial fan evolution:
    Channel dynamics, slope controls, and shoreline growth, J. Geophys. Res., 117,
    F02021, doi:10.1029/2011JF002261.
    11. Wasklewicz, T., Scheinert, C., Development and maintenance of a telescoping
    debris flow fan in response to human-induced fan surface channelization, Chalk
    Creek Valley Natural Debris Flow Laboratory, Colorado, USA, Geomorphology
    (2015), http://dx.doi.org/10.1016/j.geomorph.2015.06.03

    QR CODE
    :::