| 研究生: |
柯孟岑 Meng-Tsen Ke |
|---|---|
| 論文名稱: |
CMT2D 相關之酵母菌 glycyl-tRNA synthetase 突變蛋白功能研究 Functional analysis of Charcot-Marie-Tooth type 2D related glycyl-tRNA synthetase mutants in yeast |
| 指導教授: |
王健家
Chien-Chia Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 酵母菌 、tRNA 合成酶 、CMT |
| 外文關鍵詞: | yeast, Charcot-Marie-Tooth disease, glycyl-tRNA synthetase |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
恰克-馬利-杜斯氏症 (Charcot-Marie-Tooth disease, CMT) 是相當常見的遺傳性神經病變,每兩千五百人中約有一人罹病。CMT 並非單基因遺傳疾病,數個不同的基因突變或缺損都可能引起此疾病。研究發現,人類 GARS 基因的單點誤意突變亦導致 CMT type 2D (CMT2D)。至今共有十個致 CMT 突變 GARS 基因中被發現。GARS 基因的產物glycyl-tRNA synthetase (GlyRS) 是催化胺醯化作用的主要酵素,使胺基酸正確地接到相對應的 tRNA 上,讓遺傳訊息得以準確地傳遞,是生命延續的不可或缺的酵素。在本實驗中我們選擇酵母菌 GlyRS 與人類 GlyRS 序列相同的突變位置:E21G、L69P、I263F、G223R、H402R 及 G512R 以觀察 CMT2D 在酵母菌模型中生化活性及表現型的變異。藉由測試突變株在酵母菌中的表現型、酵素活性、蛋白質穩定度及組成 GlyRS酵素雙聚體的能力推測引起 CMT2D 的可能原因。我們的酵母菌模型中觀察到 I263F、H402R 和 G512R 等突變並不能提供 GlyRS 的細胞質功能及粒線體功能。在 pull-down assay 中,這些致 CMT2D 的突變並不會影響 GlyRS 雙聚體的結合狀態,然而在生長試驗中這些突變中卻未觀察到相對應顯性失活效應。我們同時也觀察到部分致CMT2D 突變和已知的酵母菌 P552F 突變具有相同的通讀轉錄的現象,未來我們將會針對 GlyRS 的非典型功能做更深入的探討。
Charcot-Marie-Tooth disease, or CMT, is the most common inherited neurological disorder, with a frequency about 1 in 2500 people. Several genes have been identified associated with CMT. Missense mutation in glycyl-tRNA synthetase (GlyRS) leads to peripheral nerve degeneration specified as Charcot-Marie-Tooth disease type 2D (CMT2D). In the past decade, ten mutations that are associated with CMT2D were identified in human GlyRS, an essential enzyme for protein translation. Among conserved sequence between yeast and human, E21G, L69P, I263F, G223R, H402R, andG512R were chosen in this research to study the phenotype changes, enzyme activity, and dimer stability in yeast model. Our data indicated I263F, H402R and G512R were not able to complement both cytoplasmic and mitochondrial function in GRS1 knockout strain. In addition, though these CMT2D-cusing mutants did not affect the dimer association of GlyRS, these mutants did not reveal any dominant negative effects in growth assays, suggesting the mutant proteins were not poison to the wild-type ones. Surprisingly, some of CMT2D-causing mutants had the same effect as yeast transcriptional read-through mutant P552F in dual luciferase assay, implying the putative role of GlyRS secondary function in CMT2D pathogenesis. Easily introduced mutations and genetic simplicity of yeast will be a powerful tool for assaying for the putative function of GlyRS to further dissect the mechanism of CMT2D.
Antonellis, A., Ellsworth, R. E., Sambuughin, N., Puls, I., Abel, A., Lee-Lin, S. Q., Jordanova, A., Kremensky, I., Christodoulou, K., Middleton, L. T., Sivakumar, K., Lonasescu, V., Funalot, B., Vance, J. M., Glodfarb, L. G., Fischbeck, K. H., and Green, E. D. (2003) Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am. J. Hum. Genet. 72: 1293-1299
Antonellis, A. and Green, E. D. (2008) The role of aminoacyl-tRNA synthetases in genetic disease. Am. J. Hum. Genet. 9: 87-107
Antoneillis, A., Lee-Lin, S. Q., Wasterlain, A., Leo, P. Quezado, M., Goldfarb, L. G., Myung. K., Burgess, S., Fischbeck, K.H., and Green, E. D. (2006) Functional analysis of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzyme in peripheral axons. J. Neurosci. 26: 10397-10406
Brown, M. V., Reader, J. S., and Tzima, E. (2010) Mammalian aminoacyl-tRNA synthetase: Cell signaling functions of the protein translation machinery. Gen. Pharmocol-Vasc. S. 52: 21-26
Buratowski, S., (2005) Connections between mRNA 3'' end processing and transcription termination. Curr. Opin. Cel.l Biol. 17:257-261
Chan, D. C. (2006) Mitochondria: dynamic organelles in disease, aging and development. Cell 125: 1241-1252
Chang, K. J., and Wang, C. C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J. Biol. Chem. 279: 13778-13785
Chihara, T., Luginbuhl, D., and Luo L. (2007) Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat Neurosci. 10: 828-837
Del Bo, R., Locateli, F., Corti, S., Scalato, M., Ghezzi, S., Prelle, A. Fagiolari, G., Moggio, M., Carpo, M., Bresolin, N., and Comi, G. P. (2006) Coexistence of CMT-2D and distal SMA-V phenotypes in an Italian family with a GARS gene mutation. Neurology 66: 752-754
Dubourg, O., Azzedine, H., Yaou, R. B., Pouget, J., Barois, A., Meininger, V., Bouteiller, D., Ruberg, M., Brice, A., and LeGuern, E. (2006) The G526R glycyl-tRNA synthetase gene mutation in distal hereditary motor neuropathy type V. Neurology 66: 1721-1726
Hamaguchi, A., Ishida, C., Iwasa, K., Abe, A., and Yamada, M. (2010) Charcot-Marie-Tooth disease type 2D with a novel glycyl-tRNA synthetase gene (GARS) mutation. J. Neurol. (E-pub)
James, P. A., Cadar, M. Z., Muntoni, F., Childs, A. M.,Crow, Y. J., and Talbot, K. (2006) Severe childhood SMA and axonal CMT due to anticodon binding domain mutations in the GARS gene. Neurology 67: 1710-1712
Johanson, K., Hoang, T., Shethe, M., and Hyman, L. E. (2003) GRS1, a yeast tRNA synthetase with a role in mRNA 3’ end formation. J. Biol. Chem. 278: 35923-35930
Kern, D., Giegé, R., and Ebel, J. P. (1981) Glycyl-tRNA synthetase from baker’s yeast. Interconversion between active and inactive forms of enzyme. Biochemistry 20 : 122-131
Ko, Y. G., Park, H., and Kim, S. (2002) Novel regulatory interactions and activitys of mammalian tRNA synthetases. Proteomics 2: 1304-1310
Magrath, C. and Hyman, L. E. (1999) A mutation in GRS1, a glycyl-tRNA synthetase, affects 3’-end formation in Saccharomyces cerevisiae. Genetics 152: 129-141
Mazauric, M. H., Reinbolt, J., Lorber, B., Ebel, C., Keith, G., Giegé, R., and Kerm, D. (1996) An example of non-conserveation of oligomeric structure in porkaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus. Eur. J. Biochem. 241: 814-826
Motley, W. W., Talbot, K., and Fischbeck, K. H. (2009) GARS axonopathy: not every neuron’s cup of tRNA. Trends. Neurosci 33: 59-66
Nangle, L. A., Zhang, W. Xie, W., Yang, X-L, and Schimmel, P. (2007) Charcot-Marie Tooth disease-associated mutant tRNA synthetases linked to alter dimer interface and neurite distribution defect. Proc. Natl. Acad. Sci. USA 104: 11239-11244
Rho, S. B., Lincecum, T. L. Jr., Martinis, S. A. (2002) An inserted region of leucyl-tRNA synthetase plays a critical role in group I intron splicing. EMBO J. 24:6874-81.
Pareyson, D. and Marchesi, C. (2009) Diagnosis, natural history, and management of Charcot-Marie-Tooth disease. Lancet Neurol 8: 654-657
Park, S. G., Schimmel, P., Kim, S. (2008) Aminoacyl tRNA synthetase and their connections to disease. Proc. Natl. Acad. Sci. USA 105: 11043-11049
Rohkmn, B., Rohkamm, B., Reilly, M.M., Lochmüller, H., Schlotter-Weigel, B., Barisic, N., Schöls, L., Nicholson, G., Pareyson, D., Laurà, M., Janecke, A. R., Miltenberger-Miltenyi, G., John, E., Fischer, C., Grill, F., Wakeling, W., Davis, M., Pieber, T. R., and Auer-Grumbach, M. (2007) Further evidence for genetic heterogeneity of distal HMN type V, CMT2 with predominant hand involvement and Silver syndrome. J. Neurol. Sci. 263: 100-106
Raychaufhuri, S., Fontanse, V., Banerjee, F., Bernavichute, Y., and Dasgupta, A. (2006) Zuotin, a DnaJ molecular chaperone, stimulates cap-independent trnaslation in yeast. Biochem. Bioph. Res. Co. 350: 788-795
Sivakumar, K., Kyriakides, T., Puls, I., Nicholson, G. A., Funalot, B., Antonellis, A., Sambuughin, N., Christodoulou, K., Beggs, J. L., Zamba-Papanicolaou, E., Ionasescu, V., Dalakas, M. C., Green, E. D., Fischbeck, K. H., Goldfarb, L. G. (2005) Phenotypic spectrum of disorders associated with glycyl-tRNA synthetase mutations. Brain 128: 2304-2314
Seburn, K. L., Nangle, L. A., Cox, G. A., Shimmel, P., and Burgess, R. W. (2006) An active dominant mutation of glycyl-tRNA synthetase causes neuropathy in a Charcot-Marie-Tooth 2D mouse model. Neuron 51: 715-726
Skre, H. (1974) Genetic and clinical aspects of Charcot-Marie-Tooth’s disease. Clin. Genet. 6: 98-118
Storkebaum, E., Leitão-Gonçalves, R., Godenschwege, T., Nangle, L., Mejia, M., Bosmans, I., Ooms, T., Jacobs, A., Van Dijck, P., Yang, X. L., Schimmel, P., Norga, K., Timmerman, V., Callaerts, P., and Jordanova, A. (2009) Dominant mutations in the tyrosyl-tRNA synthetase gene recapitulate in Drosophila features of human Charcot-Marie-Tooth neuropathy. Proc. Natl. Acad. Sci. USA 106: 11782-11787
Suter, U., and Scherer, S. S. (2003) Disease mechanism in inherited neuropathies. Nat. Rev. Neurosci. 4: 714-726
Szigeti, K. and Lupski, J.R. (2009) Charot-Marie-Tooth disease. Eur. J. Hum. Genet. 10: 1-8
Turner, R. J., Lovato, M., and Schimmel, P. (2000) One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J. Biol. Chem. 27: 27681–27688
Tzima, E. and Schimmel, P. (2006) Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase. Trends Biochem. Sci. 31: 7-10
Xie, W., Nangle, L. A., Zhang, W, and Schimmel, P. (2007) Long-range structural effects of a Charcot-Marie-Tooth disease-causing mutation in human glycyl-tRNA synthetase. Proc. Natl. Acad. Sci. USA 104: 9976-9981