跳到主要內容

簡易檢索 / 詳目顯示

研究生: 薛志瑋
Chih-Wei Xue
論文名稱: 井狀結構全像碟片應用於角度多工全像儲存系統之研究
Study of Well-Structured Holographic Disk for Angular Multiplexing Holographic Data Storage System
指導教授: 孫慶成
Ching-Cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 132
中文關鍵詞: 全像術全像儲存
外文關鍵詞: Holography, Holographic data storage
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文建立一套井狀結構全像碟片內之等效光場傳遞模型,並基於此模型模擬全像儲存系統使用井狀結構全像碟片時,訊號紀錄與讀取的狀況,並且將由於井狀結構鏡射而錯位的訊號,解回原本的位置後,進行誤碼比對與分析。最後建立一套全像儲存系統中M#消耗的評估方法,比較井狀結構全像碟片與傳統全像碟片間的優劣。


    In this thesis, a 4-side reflected well-like holographic disk is proposed to improve the performance of a holographic data storage system. An equivalent light propagation model is built to simulate the writing process and the reading result of a holographic disk of this type. A recovery method is established to recover the reflected signal proceeding the bit error comparison process. An approach to calculate effective consumption ratio of M# is suggested to evaluate the performance of a holographic data storage system, comparing with the traditional holographic disk.

    摘要 I 致謝 III 目錄 IV 圖目錄 VII 表目錄 XIV 第一章 緒論 1 1-1 研究動機 1 1-2 全像儲存技術之歷史與發展 2 1-3 論文大綱 5 第二章 原理介紹 7 2-1 全像術 7 2-2 布拉格條件 10 2-3 耦合波理論 14 2-3-1 布拉格匹配 19 2-3-2 布拉格不匹配 21 2-4 相位疊加法 24 第三章 加入井狀結構碟片之全像儲存系統之建立 28 3-1 同軸式全像儲存系統 28 3-2 離軸式全像儲存系統 29 3-3 目前全像碟片厚度之限制 30 3-4 加入井狀結構全像碟片之全像儲存系統 32 3-5 井狀結構全像碟片內光場傳遞模型之建立 35 第四章 井狀結構全像碟片之紀錄讀取與誤碼分析 42 4-1 系統理論模型推導 42 4-2 井狀結構所導致訊號鏡射之還原方法 50 4-3 經過還原之訊號之誤碼分析 56 4-3-1 不同井狀結構全像碟片厚度下之誤碼比對 57 4-3-2 井狀結構全像碟片於x方向上位移所造成之影響 61 4-3-3 井狀結構全像碟片於x方向上微小變動之誤碼率靈敏度分析 65 4-4 繞射訊號局域不均之成因分析 69 第五章 全像儲存系統之M#消耗分析 72 5-1 全像碟片中之有效M#消耗 72 5-2 紀錄區域大小對繞射效率之影響 74 5-3 離軸式全像儲存系統有無使用井狀結構全像碟片之比較 76 5-4 改進係數(improvement factor)之定義 81 5-5 選用高NA物鏡之全像儲存系統 87 5-5-1 選用NA值為0.9之物鏡 91 5-5-2 選用NA值為1.1之物鏡 95 第六章 結論 101 參考文獻 104 附錄A 107 中英文名詞對照表 108

    1. D. Reinsel, J. Gantz, J, Rydning, “The Digitization of the World - From Edge to Core,” https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf.
    2. S. Kostyshen, “The bridge to big data – nice work if you can get it,” http://www.k2view.com/blog_post/the-bridge-to-big-data-nice-work-if-you-can-get-it/.
    3. T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55, 09SA06 (2016).
    4. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3, e177 (2014).
    5. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” in Proceedings of IEEE 92, 1231–1280 (2004).
    6. L. Dhar, K. Curtis, and T. Fäche, “Holographic data storage: Coming of age,” Nat. Photonics 2, 403–405 (2008).
    7. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
    8. E. N. Leith, A. Kozma, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
    9. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471 (1992).
    10. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
    11. J. W. Goodman, Introduction to Fourier Optics, 3rd eds. (McGraw-Hill, New York, 2002).
    12. H. Coufal, and G. W. Burr, “Optical data storage,” Chapter 26, International Trends in Applied Optics, ed., A. Guenther, SPIE, (2002).
    13. K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004).
    14. J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42, 1377-1380 (2017).
    15. R. Fujimura, T. Shimura, and K. Kuroda, “Multiplexing capability in polychromatic reconstruction with selective detection method,” Opt. Express 18, 1091-1098 (2010).
    16. T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38, 748-750 (2013).
    17. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
    18. H. Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
    19. T. C. Teng, Y. W. Yu, and C. C. Sun, “Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs,” Opt. Express 14, 3187–3192 (2006).
    20. T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40, 2161–2164 (2015).
    21. C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39, 6891-6894 (2014).
    22. C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
    23. D. Gabor, “A new Microscopic principle,” Nature 161, 777 (1948).
    24. E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” Opt. Soc. Am. 52, 1123 (1962).
    25. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393 (1963).
    26. A. Pu and D. Psaltis, “Holographic data storage with 100 bits/μm2 density,” presented at Optical Data Storage Topical Meeting ODS Conference Digest, Arizona-Tucson, USA, 1997.
    27. G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A.Hoffnagle, R. M. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 250 Gigapixels/in2,” Opt. Lett. 26, 444–446 (2001).
    28. K. Curtis, “Holographic Data Storage,” presented at 2005 Fall Research Review, Center for Magnetic Recording Research, University of California, San Diego, 26 October 2005.
    29. T. Sandhu, “Holographic storage promises 1.6TB per disc by 2011. 300GB on show today,” http://hexus.net/tech/news/storage/8150-holographic-storage-promises-16tb-per-disc-2011-300gb-show-today/.
    30. W. R. Klein, “Theoretical Efficiency of Bragg Devices,” Proc. IEEE 54, 803-804 (1966).
    31. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
    32. A. Yariv, and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York, 1984).
    33. 楊繼賢,使用微透鏡陣列之同軸全像儲存系統與其考慮材料紀錄動態範圍之模型建立,中華民國一百零六年。
    34. 鄧敦建,體積全像於光學元件及光儲存之研究,國立中央大學光電科學研究所博士論文,中華民國九十五年。
    35. C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
    36. 鄭智元,同軸式全像儲存系統記錄介質具有離焦及傾斜之研究,國立中央大學光電科學研究所博士論文,中華民國一百零四年。
    37. 鄭智元、余業緯、孫慶成 (2014, 03)。〈同軸式全像資訊儲存系統之理論模型〉。科儀新知,198,頁73-84。
    38. B. E. Miller and Y. Takashima, "Cavity techniques for holographic data storage recording," Opt. Express 24, 6300-6317 (2016).
    39. T. Nobukawa and T. Nomura, “Digital super-resolution holographic data storage based on Hermitian symmetry for achieving high areal density,” Opt. Express 25, 1326-1338 (2017).
    40. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Optics Lett. 21, 896-898 (1996).
    41. D. G. Voelz, Computational Fourier Optics: A MATLAB Tutorial (SPIE Press, 2011).
    42. S. Bhattacharya and V. Anand, Design and Fabrication of Diffractive Optical Elements with MATLAB (SPIE Press, 2017).
    43. K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20, 1755–1762 (2003).
    44. K. Matsushima, “Shifted angular spectrum method for off-axis numerical propagation,” Opt. Express 18, 18453-18463 (2010).
    45. T. Shimobaba, K. Matsushima, T. Kakue, N. Masuda, and T. Ito, “Scaled angular spectrum method,” Opt. Lett. 37, 4128-4130 (2012).
    46. A. Ritter, “Modified shifted angular spectrum method for numerical propagation at reduced spatial sampling rates,” Opt. Express 22, 26265-76 (2014).
    47. C. Chang, J. Xia, J. Wu, W. Wei, Y. Xie, M. Kang, and Q. Zhang, “Scaled diffraction calculation between tilted planes using nonuniform fast Fourier transform,” Opt. Express 22, 17331-40 (2014).
    48. T. Kozacki and K. Falaggis, “Angular spectrum method with compact space-bandwidth: generalization and full-field accuracy,” Appl. Opt. 55, 5014-24 (2016).
    49. K. Curtis, K. Anderson, and M.R. Ayres. “M/# Requirements for Holographic Data Storage,” in Optical Data Storage Topical Meeting (2006).
    50. M. R. Ayres and R. R. McLeod, “Medium consumption in holographic memories,” Appl. Opt. 48, 3626-3637 (2009).

    QR CODE
    :::