| 研究生: |
鍾明哲 Ming-Jhe Jhong |
|---|---|
| 論文名稱: |
利用中壢特高頻雷達新干涉天線陣列觀測中氣層之風場 Using Chung-Li VHF radar to observing the wind field of the Taiwan of mesosphere |
| 指導教授: |
朱延祥
Yen-Hsyang Chu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 干涉定位 、流星尾 、風場 |
| 外文關鍵詞: | interferometric, meteor, wind field |
| 相關次數: | 點閱:26 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
民國101年,中壢52MHz特高頻雷達站增設了一套干涉天線陣列,由5座八木天線排列成非等間距之十字型,提供干涉定位所需5路接收信號;本研究主要目的是在建立此干涉天線陣列之定位方法;干涉定位時必須利用不同天線間接收目標時,因傳播路徑差而產生之相位差值,推估出目標物的空間位置;由於天線間距均超過半波長,自然會存在空間位置的混淆現象,且接收通道內部之系統相位差,亦會影響定位正確性,本文發展干涉定位技術時,首先必須獲得經由系統正確的相位誤差量,提供各通道接收信號作為補償之依據,接著解算通道間信號相位差,並經由多組求解方式,設法解決空間位置的混淆現象,歸納出目標位置的唯一解。
接收通道的系統相位差可以利用中壢地區上空電離層散塊E層(Es)因沿磁場分布(Field Aligned)及其回波信號必須以接近垂直波束角度的指向靈敏性(Aspect sensitivity)特徵,其回波空間位置可以利用IGRF模型得出預測回波分布區;實際散塊E層回波信號經干涉定位後,所得到的空間位置分布,與理論分析所得預測回波位置比較後,即可得出系統相位偏差量。
本文成功建立了相位差獲得方法,並用於干涉定位技術,因此可針對空間隨機分布之流星尾信號進行正確定位,得到其高度及方位資料,因流星尾會隨時間擴散並受中氣層風場影響而飄移,依據移動窗區法(Sliding Window)挑選出流星尾資料,並利用最小平方法(Least-squares Method),由回波都卜勒(Doppler)信號可以估計出中氣層水平背景風場。推算出水平東西向及南北向不同高度之風場分布,經過與HWM和TIDI(TIMED Doppler Interferometer)觀測所獲得風場比較,,其變化趨勢具有一致性,且全日潮(Diurnal Tide)特徵是相當明顯的。
The new interferometry antenna array composed with the five YAGIs is built at Chungli 52MHz VHF radar station in 2012. The antenna array is arranged in the form of an asymmetric cross providing that 5 channels interference received signal. The purpose of this study is to create interferometric positioning formula. Interference positioning requires individual path differences between the receiving antennas and targets. We can estimate the spatial position of the target through phase differences due to propagation path difference. Because all the antenna distances are longer than half wavelength, that leads to phase aliasing. The system phases of receiving channels also affect the positioning accuracy. Interferometer positioning technology developed in this paper, first, needs the correct phase error value of the system. Second, solving channel phase difference between the signals and multi-solving the spatial location aliasing give the unique solution of the target location.
The phase differences of receiving channel can be found by collecting the echo signals of sporadic E layer in the ionosphere. The forecast echo distribution of IGRF model provides a theoretical position. We can obtain the differences through the overall comparison between observation and model run.
This paper successfully established a method for obtaining the phase difference and interferometric positioning technology. Thus, spatial random distribution of meteor signals is correctly positioned in height and location information. Meteor trail diffuse with the mesosphereupper wind to drift. Using Sliding Window method to choose the meteor data and use them for the estimation which is by means of the least squares method of the background mesosphereupper wind field. After surveying the HWM and TIDI (TIMED Doppler Interferometer) wind field observed, they are consist with my results and the Diurnal Tide features are quite obvious.
(1) Baggaley, W. J. and E. M. Poulter, ‘‘The radio meteor wind facility at Christchurch’’, New Zealand, Journal of Atmospheric and terrestrial Physics Vol. 40, pp. 941-943, 1978.
(2) Woodman, R.F. and W.E. Guillen, ‘‘Radar observations of winds and turbulence in the stratosphere and mesosphere’’, J, Atmos. Sci. , Vol. 31,pp.493-505, 1974.
(3) Riggin, D., W. E. Swartz, Providakes, J., and D. T. Farley, ‘‘ Radar studies of long-waves associated with mid-latitude sporadic E layers’’, Journal of Geophysical Research, 91, 8011, 1986.
(4) Yamamoto, M., N. Komoda, S. Fukao, R. T. Tsunoda, T. Ogawa, and T. Tsuda, ‘‘Spatial structure of the E-region field-aligned irregularities revealed by the Mu radar’’, Radio Sci., 29, 337, 1994.
(5) Elford, W. G, D. S. Roberston, ‘‘Measurement of winds in the upper atmosphere by means of drifting meteor trails’’, Journal of Atmospheric and terrestrial Physics Vol. 4, pp. 271-284, 1953
(6) Avery, S. K., A. C. Riddle and B. B Balsley, ‘‘ The Poker Flat, Alaska, MST radar as a metero radar’’, Radio Science, Vol. 18, No. 6 pp. 1021-1027, Nov.- Dec. ,1983
(7) Valentic, T. A., J. P. Avery and S. K. Avery: MEDAC/SC, ‘‘A third generation Meteor echo Detection and Collection System’’, IEEE transactions on Geoscience and Remote sensing. Vol. 34 No. 1 Jan. ,1996。
(8) Valentic, T. A., ‘‘New Approaches to meteor radar data processing, Thesis of Doctor of philosophy’’, Department of Electrical and computer Engineering, 1996。
(9) Hocking W.K., B. Fuller and B. Vandepeer, ‘‘Real-time determination of meteor-related parameters utilizing modern digital technology’’, Journal of Atmospheric and Solar-Terrestrial Physics 63, pp.155-169, 2001.
(10) 龔瑞鳴,利用中壢VHF雷達進行流星尾觀測系統及方法之建立,國立中央大學大氣物理研究所,博士論文,1998。
(11) 王建亞,利用中壢VHF雷達進行電離層散塊E層不規則體之觀測,國立中樣大學太空科學研究所,博士論文,1999。
(12) 張勝忠,利用中壢特高頻雷達對流星現象進行觀測與應用,國立中央大學太空科學研究所,碩士論文,2000。
(13) 程昭團,利用雷達干涉法進行流星尾定位與背景風場估計,國立中央大學太空科學研究所,碩士論文,2005。
(14) 林廷翰,利用中壢特高頻雷達研究中緯度電離層散塊E層公尺級不規則體之動力行為,國立中央大學太空科學研究所,碩士論文,2009。
(15) 陳祥章,中壢雷達三維輻射場型模擬與分析及系統建立,國立中央大學太空科學研究所,碩士論文,2005。