跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳漢揚
Han-Yang Wu
論文名稱: 自駕車隊跟車模式及車隊運行效率分析
Car-Following Model and Operating Efficiency of Autonomous Platoon
指導教授: 吳健生
Jian-Sheng Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 101
中文關鍵詞: 自駕車跟車模式車隊恢復時間
外文關鍵詞: autonomous vehicle, car-following model, platoon, recovery time
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,自駕系統已逐步應用在當今的車輛之中。由於自駕系統在判斷速度與車輛控制上的優勢,使自駕系統能帶來更為安全與高效的交通環境。在未來隨著自駕系統的成熟,自駕車於道路的占比將會增加。而當自駕車隊在受到干擾之下,車隊的控制與恢復會影響其運行的效率。分析自駕車在車流中的效益以及車隊干擾後恢復情形,是自駕車研究中重要的課題。
    本研究在自駕車控制模式的設計上,會以車輛的行駛狀態、與前車的間距以及舒適性等因素作為車輛加減速控制考量的依據。並且在模式中會加入急衝度參數的影響,使車輛在加速度選擇與控制上更符合實際的情況。
    在研究結果中,發現在巨觀車流自駕車的確能帶來更好的通行效率,且在高速率下有著更佳的車流率。在車隊干擾恢復方面,由於更短的反應延遲時間,自駕車是能比人駕車輛更快的恢復至原有速度。另外於車隊干擾情境對恢復時間影響的分析中,在比較了干擾車相距的距離以及干擾的時間兩種干擾因子後,發現了相對於干擾車的距離,干擾時間更能影響車隊的恢復時間。並以色溫圖呈現兩種不同因子之下,其車隊恢復時間的分布情形,將以上的結果作為未來交通管理中的參考依據。


    In recent years, Automated Driving Systems have been gradually applied in today's vehicles. Due to the advantages of system in judging speed and vehicle control, ADS can be safer and more efficient in traffic environment. As the system matures in the future, the proportion of autonomous will increase. When the auto-nomous platoon is interfered, the recovery of the platoon will affect the operating efficiency. Analyzing the benefits of autonomous in the traffic flow and the recovery situation after the interference are important topic in the research of autonomous.
    In the research will design a car-following model of autonomous platoon. In the model, the driving state of vehicles, the distance from the front vehicle, and comfort as consideration of autonomous acceleration and deceleration control.
    In the results, it’s found that autonomous can bring better traffic efficiency and have a better traffic flow rate at high speeds in macroscopic traffic flow. In terms of recovery from platoon interfered, autonomous can recover to the original speed faster than human-driven vehicles due to the shorter react time. By comparing the factors of interfere distance and interfere time, it’s found that interfere time can affect recovery time more than interfere distance. And using the temperature chart shows the distrib-ution of the recovery time under these two factors, these results can be a reference for future traffic management.

    摘 要 i ABSTRACT ii 誌 謝 iii 目 錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的與範圍 4 1.3 研究流程 5 第二章 文獻回顧 6 2.1 跟車模式 6 2.2 車隊運行效率 8 2.3 乘客舒適性 10 2.4 小結 10 第三章 自駕車隊跟車模式 11 3.1 模式假設 11 3.2 模式建構 12 3.2.1 控制目標 12 3.2.2 加減速控制 13 3.2.3 舒適性範圍與門檻 19 3.2.4 控制流程 20 3.3 小結 21 第四章 實驗設計 22 4.1 情境設定 22 4.2 計算範例 24 第五章 車隊運行效率分析 33 5.1 巨觀車流模式分析 33 5.2 情境結果分析 43 5.2.1 車隊初速30 km/hr 44 5.2.2 車隊初速50 km/hr 53 5.2.3 車隊初速90 km/hr 61 5.2.4 與人駕車隊恢復時間比較 64 5.3 車隊恢復時間分析 67 5.4 小結 75 第六章 結論與建議 76 6.1 結論 76 6.2 建議 76 參考文獻 77 附 錄 80 附錄一 情境3模擬結果 80 附錄二 情境4模擬結果 82 附錄三 情境7模擬結果 84 附錄四 情境8模擬結果 86 附錄五 恢復時間比較之模擬結果 88

    [1] Ioannou, P. A., & Chien, C. C. (1993). Autonomous intelligent cruise control. IEEE Transactions on Vehicular technology, 42(4), 657-672.
    [2] Ioannou, P., Xu, Z., Eckert, S., Clemons, D., Sieja, T. (1993, December). Intelligent cruise control: theory and experiment. In Proceedings of 32nd IEEE Conference on Decision and Control (pp. 1885-1890). IEEE.
    [3] Raza, H., Ioannou, P. (1996). Vehicle following control design for automated highway systems. IEEE Control Systems Magazine, 16(6), 43-60.
    [4] Treiber, M., Hennecke, A., Helbing, D. (2000). Congested traffic states in empirical observations and microscopic simulations. Physical review E, 62(2), 1805.
    [5] Newell, G. F. (1961). Nonlinear effects in the dynamics of car following. Operations research, 9(2), 209-229.
    [6] Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y. (1995). Dynamical model of traffic congestion and numerical simulation. Physical review E, 51(2), 1035.
    [7] Helbing, D., Hennecke, A., Shvetsov, V., Treiber, M. (2002). Micro-and macro-simulation of freeway traffic. Mathematical and computer modelling, 35(5-6), 517-547.
    [8] Malinauskas, R. M. (2014). The intelligent driver model: Analysis and application to adaptive cruise control (Doctoral dissertation, Clemson University).
    [9] Pipes, L. A. (1966). Car following models and the fundamental diagram of road traffic. Transportation Research/UK/.
    [10] Forbes, T. W., Simpson, M. E. (1968). Driver-and-Vehiele Response in Freeway Deceleration Waves. Transportation science, 2(1), 77-104.
    [11] Herman, R., Montroll, E. W., Potts, R. B., & Rothery, R. W. (1959). Traffic dynamics: analysis of stability in car following. Operations research, 7(1), 86-106.
    [12] Herman, R., Potts, R. B. (1959). Single lane traffic theory and experiment.
    [13] Gazis, D. C., Herman, R., Potts, R. B. (1959). Car-following theory of steady-state traffic flow. Operations research, 7(4), 499-505.
    [14] Gazis, D. C., Herman, R., & Rothery, R. W. (1961). Nonlinear follow-the-leader models of traffic flow. Operations research, 9(4), 545-567.
    [15] Greenshields, B. D., Bibbins, J. R., Channing, W. S., Miller, H. H. (1935). A study of traffic capacity. In Highway research board proceedings (Vol. 1935). National Research Council (USA), Highway Research Board.
    [16] Sala, M., Soriguera, F. (2020). Macroscopic modeling of connected autonomous vehicle platoons under mixed traffic conditions. Transportation Research Procedia, 47, 163-170.
    [17] Sala, M., Soriguera, F. (2021). Capacity of a freeway lane with platoons of autonomous vehicles mixed with regular traffic. Transportation research part B: methodological, 147, 116-131.
    [18] Davis, L. C. (2013). The effects of mechanical response on the dynamics and string stability of a platoon of adaptive cruise control vehicles. Physica A: Statistical Mechanics and its Applications, 392(17), 3798-3805.
    [19] Davis, L. C. (2004). Effect of adaptive cruise control systems on traffic flow. Physical Review E, 69(6), 066110.
    [20] Talebpour, A., Mahmassani, H. S. (2016). Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transportation Research Part C: Emerging Technologies, 71, 143-163.
    [21] Talebpour, A., Mahmassani, H. S., & Hamdar, S. H. (2011). Multiregime sequential risk-taking model of car-following behavior: specification, calibration, and sensitivity analysis. Transportation research record, 2260(1), 60-66.
    [22] Shang, M., Stern, R. E. (2021). Impacts of commercially available adaptive cruise control vehicles on highway stability and throughput. Transportation research part C: emerging technologies, 122, 102897.
    [23] Chandler, R. E., Herman, R., Montroll, E. W. (1958). Traffic dynamics: studies in car following. Operations research, 6(2), 165-184.
    [24] Hoberock, L. L. (1977). A survey of longitudinal acceleration comfort studies in ground transportation vehicles.
    [25] Lighthill, M. J., Whitham, G. B. (1955). On kinematic waves II. A theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229(1178), 317-345.
    [26] Bae, I., Moon, J., Jhung, J., Suk, H., Kim, T., Park, H., ... & Kim, S. (2020). Self-Driving like a Human driver instead of a Robocar: Personalized comfortable driving experience for autonomous vehicles. arXiv preprint arXiv:2001.03908.
    [27] Fenton, R. E. (1979). A headway safety policy for automated highway operations. IEEE Transactions on Vehicular Technology, 28(1), 22-28
    [28] 許鉅秉、吳熙仁、蔡孟釗,「自動公路系統發生事件下自動駕駛車輛於鄰近混合車道跟車邏輯之研究」,運輸計劃季刊,第45卷第2期,頁133~163,民國105年。
    [29] 蔡孟釗、許鉅秉,「單一車道自動公路系統發生意外事故下自動車輛跟車邏輯」,國立交通大學交通運輸研究所碩士論文,民國 94 年。
    [30] 林志威,「不同狀況下對自駕車隊影響之研究」,碩士論文,民國109年
    [31] 張季倫、藍武王,「公路客運行車監控系統之研訂及駕駛與車輛資料庫管理系統之研發-數位 式行車紀錄器之應用」,國立交通大學交通運輸研究所碩士論文,民國 91 年。
    [32] 謝家敏,「最低限速改變對國道五號雪山隧道容量及駕駛行為之影響研 究」,碩士論文,民國109年

    QR CODE
    :::