| 研究生: |
許甯貽 Ning-Yi Hsu |
|---|---|
| 論文名稱: |
以螢光光譜探討Indolicidin及其類似物與微脂粒之交互作用 Investigation of the interactions of indolicidin analogs with SUVs by Fluorescence Spectroscopy Analysis |
| 指導教授: |
阮若屈
Ruoh-Chyu Ruaan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 螢光光譜 、鹼性抗生胜肽 、微脂粒 |
| 外文關鍵詞: | indolicidin, peptide-membrane interaction, fluorescence spectroscopy |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鹼性抗生胜肽Indolicidin(IL)為13個胺基酸所組成之短鏈胜肽,對許多微生物具有抗生的活性,包括細菌、病毒、真菌,由於具有經濟效益及廣效的抗菌活性,因此IL被認為是具有潛力的抗生藥物。然而,Indolicidin對於人類紅血球的溶血活性限制其在醫療應用的進一步發展。在過去文獻中,Ahmad等人[1]曾提出IL之溶血行為可能跟其自身聚集(Self-aggregation)有關。以此作為基礎,在本研究的第一部分,主要為利用螢光光譜探討IL及其類似物之寡聚(Oligomerization)行為,發現這些胜肽在水相的螢光有自身淬滅(Self-quenching)現象,可能為寡聚體形成所造成。
更進一步地,IL及其類似物在乙醇中的螢光圖譜及丙烯醯胺螢光淬滅實驗也證實了寡聚體的存在,且寡聚程度由大到小為:IL > IL-K7 > IL-F89 > IL-K7F89。此外,藉由探討IL及其類似物與細胞膜的作用可了解影響生物活性的關鍵因素。因此,本研究利用POPG /POPC 微脂粒作為細菌細胞膜的模型,以及POPC微脂粒作為紅血球細胞膜的模型,探討IL及其類似物之寡聚體與仿細胞膜之間的作用。結合作用後螢光光譜及胜肽在乙醇中的螢光光譜,可了解IL及其類似物吸附於微脂粒的多寡及寡聚體分散程度,並以雙重螢光淬滅方法獲得插膜深度的資訊。在與負電性的POPG /POPC微脂粒作用中,發現這些胜肽幾乎全部插入微脂粒之疏水碳鏈區,且在低濃度時正電荷較多的IL-K7及IL-K7F89插膜較深,且兩者在微脂粒之疏水區較為散開;相反地,這些胜肽對於電中性之POPC微脂粒的吸附量較低,恰好與寡聚的程度正相關,且並未出現寡聚體散開的現象。綜合本研究,IL及其類似物對於抗菌的關鍵可能來自於胜肽寡聚體插膜對磷脂質的擾亂,而溶血活性可能主要與其吸附在紅血球上的量或在水相寡聚程度有關。
Indolicidin(IL) is a tryptophan(Trp)-rich cationic peptide isolated from bovine neutrophils. In the past two decades, it’s found that its bactericidal activity toward many kinds of pathogens. However, its hemolytic activity limits its application. Ahmad et al. has suggested that the self-association of IL should be related to its hemolytic behavior. Based on this suggestion, the investigations of peptide oligomerization have been conducted with fluorescence spectroscopy. Both of intrinsic fluorescence spectroscopy and fluorescence quenching by acrylamide indicated that IL and its analogs show various degrees of oligomerization, and follow the order: IL > IL-K7 > IL-F89 > IL-K7F89. Furthermore, to investigate the interactions of peptide oligomers and phospholipids, the POPG/POPC(1:1) and POPC small unilamellar vesicles (SUVs) were used in this study, which are representatives of bacterial cell membrane and the cell membrane of erythrocytes, respectively. The adsorption amount and oligomer dispersion were identified by the fluorescence spectra of peptides both in SUV and in ethanol. Also, the dual quenching of Trp by acrylamide and 10-doxylnonadecane determined the insertion depth of peptides. It was found that IL and its analogs show high affinities to the POPG/POPC SUVs, and may disperse in the SUV, especially for IL-K7 and IL-K7F89. On the other hand, IL and its analogs have lower affinities to the POPC SUVs. Interestingly, the hemolytic activities followed the same order as that of their affinities and also the oligomerization degrees. As a result, the phospholipid perturbation caused by peptides’ insertion and dispersion may be crucial to their high antimicrobial activities. As for the various hemolytic activities of IL and its analogs, they could be derived from the adsorption amount or insertion depth.
[1] Ahmad, I., Perkins, W. R., Lupan, D. M. et al., “Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity,” Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1237, no. 2, pp. 109-114, 1995.
[2] Virtanen, J. A., Cheng, K. H., and Somerharju, P., “Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 9, pp. 4964-4969, 1998.
[3] Chan, D. I., Prenner, E. J., and Vogel, H. J., “Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action,” Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1758, no. 9, pp. 1184-1202, 2006.
[4] Brogden, K. A., “Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?,” Nat Rev Micro, vol. 3, no. 3, pp. 238-250, 2005.
[5] Selsted, M. E., Novotny, M. J., Morris, W. L. et al., “Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils,” J. Biol. Chem., vol. 267, no. 7, pp. 4292-4295, 1992.
[6] Rozek, A., Friedrich, C. L., and Hancock, R. E. W., “Structure of the Bovine Antimicrobial Peptide Indolicidin Bound to Dodecylphosphocholine and Sodium Dodecyl Sulfate Micelles,” Biochemistry, vol. 39, no. 51, pp. 15765-15774, 2000.
[7] Revital Halevy, A. R., Sofiya Kolusheva, Robert E.W. Hancock, Raz Jelinek, “Membrane binding and permeation by indolicidin analogs studied by a biomimetic lipid/polydiacetylene vesicle assay,” Peptides, vol. 24, pp. 1753-1761, 2003.
[8] Ladokhin, A. S., Selsted, M. E., and White, S. H., “Bilayer Interactions of Indolicidin, a Small Antimicrobial Peptide Rich in Tryptophan, Proline, and Basic Amino Acids,” vol. 72, no. 2, pp. 794-805, 1997.
[9] Schluesener HJ, R. S., Melms A, Jung S., “Leukocytic antimicrobial peptides kill autoimmune T cells,” Journal of neuroimmunology, vol. 47, 1993.
[10] Giacometti, A., Cirioni, O., Greganti, G. et al., “In Vitro Activities of Membrane-Active Peptides against Gram-Positive and Gram-Negative Aerobic Bacteria,” Antimicrob. Agents Chemother., vol. 42, no. 12, pp. 3320-3324, 1998.
[11] Friedrich, C. L., Moyles, D., Beveridge, T. J. et al., “Antibacterial Action of Structurally Diverse Cationic Peptides on Gram-Positive Bacteria,” Antimicrob. Agents Chemother., vol. 44, no. 8, pp. 2086-2092, 2000.
[12] Falla, T. J., and Hancock, R. E., “Improved activity of a synthetic indolicidin analog,” Antimicrob. Agents Chemother., vol. 41, no. 4, pp. 771-775, 1997.
[13] Subbalakshmi, C., Krishnakumari, V., Sitaram, N. et al., “Interaction of indolicidin, a 13-residue peptide rich in tryptophan and proline and its analogues with model membranes,” J. Biosci., vol. 23, pp. 9-13, 1998.
[14] Lee, D. G., Kim, H. K., Kim, S. A. et al., “Fungicidal effect of indolicidin and its interaction with phospholipid membranes,” Biochemical and Biophysical Research Communications, vol. 305, no. 2, pp. 305-310, 2003.
[15] Stephen B. Aley, M. Z., Michel Hetsko, Michel E. Selsted, and Frances D. Gillin, “Killing of Giardia lamblia by Cryptdins and Cationic Neutrophil Peptides,” Infection and Immunity, vol. 62, no. 12, pp. 5397-5403, 1994.
[16] Robinson, W. E., McDougall, B., Tran, D. et al., “Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils,” J Leukoc Biol, vol. 63, no. 1, pp. 94-100, 1998.
[17] Vanesa, C. A. M., and Viviana, C., “Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus,” International journal of antimicrobial agents, vol. 23, no. 4, pp. 382-389, 2004.
[18] Falla, T. J., Karunaratne, D. N., and Hancock, R. E. W., “Mode of Action of the Antimicrobial Peptide Indolicidin,” J. Biol. Chem., vol. 271, no. 32, pp. 19298-19303, August 9, 1996, 1996.
[19] Yang Sung-Tae, Shin Song Yub, , K.-S. H. et al., “Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities,” International journal of antimicrobial agents, vol. 27, no. 4, pp. 325-330, 2006.
[20] Manhong Wu, E. M., Roland Benz, Robert E. W. Hancock, “Mechanism of Interaction of Different Classes of Cationic Antimicrobial Peptides with Planar Bilayers and with the Cytoplasmic Membrane of Escherichia coli,” Biochemistry, vol. 38, no. 22, pp. 7235-7242, 1999.
[21] Zhang, L., Rozek, A., and Hancock, R. E. W., “Interaction of Cationic Antimicrobial Peptides with Model Membranes,” J. Biol. Chem., vol. 276, no. 38, pp. 35714-35722, 2001.
[22] Yau, W.-M., Wimley, W. C., Gawrisch, K. et al., “The Preference of Tryptophan for Membrane Interfaces,” Biochemistry, vol. 37, no. 42, pp. 14713-14718, 1998.
[23] Norman, K. E., and Nymeyer, H., “Indole Localization in Lipid Membranes Revealed by Molecular Simulation,” Biophysical Journal, vol. 91, no. 6, pp. 2046-2054, 2006.
[24] Schibli, D. J., Epand, R. F., Vogel, H. J. et al., “Tryptophan-rich antimicrobial peptides: comparative properties and membrane interactions ” Biochemistry and Cell Biology, vol. 80, pp. 667-677, 2002.
[25] Zhao, H., Mattila, J.-P., Holopainen, J. M. et al., “Comparison of the Membrane Association of Two Antimicrobial Peptides, Magainin 2 and Indolicidin,” Biophysical Journal, vol. 81, no. 5, pp. 2979-2991, 2001.
[26] Chilukuri Subbalakshmi, N. S., “Mechanism of antimicrobial action of indolicidin,” FEMS Microbiology Letters, vol. 160, no. 1, pp. 91-96, 1998.
[27] Hsu, C.-H., Chen, C., Jou, M.-L. et al., “Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA,” Nucl. Acids Res., vol. 33, no. 13, pp. 4053-4064, 2005.
[28] Shaw, J. E., Alattia, J.-R., Verity, J. E. et al., “Mechanisms of antimicrobial peptide action: Studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy,” Journal of Structural Biology, vol. 154, no. 1, pp. 42-58, 2006.
[29] Hsu, J. C. Y., and Yip, C. M., “Molecular Dynamics Simulations of Indolicidin Association with Model Lipid Bilayers,” Biophys. J., vol. 92, no. 12, pp. 100-102, 2007.
[30] Subbalakshmi, C., Krishnakumari, V., Nagaraj, R. et al., “Requirements for antibacterial and hemolytic activities in the bovine neutrophil derived 13-residue peptide indolicidin,” FEBS Letters, vol. 395, no. 1, pp. 48-52, 1996.
[31] Subbalakshmi, C., Bikshapathy, E., Sitaram, N. et al., “Antibacterial and Hemolytic Activities of Single Tryptophan Analogs of Indolicidin,” Biochemical and Biophysical Research Communications, vol. 274, no. 3, pp. 714-716, 2000.
[32] Lakowicz, J. R., Principles of Fluorescence Spectroscopy 2nd ed.: Kluwer, 1999.
[33] Ladokhin, A. S., "Fluorescence Spectroscopy in Peptide and Protein Analysis," Encyclopedia of Analytical Chemistry, Meyers, R. A., ed., John Wiley & Sons Ltd, 2000, pp. 5762-5779.
[34] Andrushchenko, V. V., Aarabi, M. H., Nguyen, L. T. et al., “Thermodynamics of the interactions of tryptophan-rich cathelicidin antimicrobial peptides with model and natural membranes,” Biochimica et Biophysica Acta (BBA) - Biomembranes, vol. 1778, no. 4, pp. 1004-1014, 2008.
[35] Papo, N., and Shai, Y., “Exploring Peptide Membrane Interaction Using Surface Plasmon Resonance: Differentiation between Pore Formation versus Membrane Disruption by Lytic Peptides,” Biochemistry, vol. 42, no. 2, pp. 458-466, 2003.
[36] Mechler, A., Praporski, S., Atmuri, K. et al., “Specific and Selective Peptide-Membrane Interactions Revealed Using Quartz Crystal Microbalance,” Biophysical Journal, vol. 93, no. 11, pp. 3907-3916, 2007.
[37] Ladokhin, A. S., Jayasinghe, S., and White, S. H., “How to Measure and Analyze Tryptophan Fluorescence in Membranes Properly, and Why Bother?,” Analytical Biochemistry, vol. 285, no. 2, pp. 235-245, 2000.
[38] Ana Lu´ cia C.F. Souto, E. F. P., Clo´ vis R. Nakaie, Shirley Schreier, “Fluorescence and circular dichroism study of the interaction between indolicidin, a tryptophan-rich antimicrobial peptide, and model membranes,” Progr Colloid Polym Sci, vol. 128, 2004.
[39] Zhao, H., and Kinnunen, P. K. J., “Binding of the Antimicrobial Peptide Temporin L to Liposomes Assessed by Trp Fluorescence,” J. Biol. Chem., vol. 277, no. 28, pp. 25170-25177, 2002.
[40] Kachel, K., Asuncion-Punzalan, E., and London, E., “Anchoring of Tryptophan and Tyrosine Analogs at the Hydrocarbon-Polar Boundary in Model Membrane Vesicles,” Biochemistry, vol. 34, no. 47, pp. 15475-15479, 1995.
[41] Caputo, G. A., and London, E., “Using a Novel Dual Fluorescence Quenching Assay for Measurement of Tryptophan Depth within Lipid Bilayers To Determine Hydrophobic a-Helix Locations within Membranes,” Biochemistry, vol. 42, no. 11, pp. 3265-3274, 2003.
[42] Kelkar, D. A., and Chattopadhyay, A., “Monitoring ion channel conformations in membranes utilizing a novel dual fluorescence quenching approach,” Biochemical and Biophysical Research Communications, vol. 343, no. 2, pp. 483-488, 2006.
[43] Royer, C. A., “Probing Protein Folding and Conformational Transitions with Fluorescence,” Chemical Reviews, vol. 106, no. 5, pp. 1769-1784, 2006.
[44] Ladokhin, A. S., Selsted, M. E., and White, S. H., “CD Spectra of Indolicidin Antimicrobial Peptides Suggest Turns, Not Polyproline Helix,” Biochemistry, vol. 38, no. 38, pp. 12313-12319, 1999.