跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖瑩
Ying Liao
論文名稱: 金星尾波區熱氧圈的形成初探
Formation of an Extended Halo of Hot Oxygen Atoms in the Wake Region of Venus
指導教授: 葉永烜
Wing-Huen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
畢業學年度: 100
語文別: 英文
論文頁數: 38
中文關鍵詞: 熱氧原子離子流金星蒙地卡羅
外文關鍵詞: hot oxygen atom, Venus, Monte-Carlo, ionospheric flow
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先鋒-金星1號(Pioneer Venus Orbiter)的探測結果證實了金星熱氧圈(hot oxygen corona)的存在。構築熱氧圈的熱氧原子O*是由於金星離子球層的O2+受到電子撞擊,解離後重新再結合而成。無獨有偶,先鋒-金星1號也在金星高層大氣中探測到由晝半球往夜半球大規模流動的離子流,並且此離子流在金星晨昏線(terminator)上方約500公里處將可達到每秒5公里的流速。如此大型的晝夜向對流可能影響熱氧原子的運動軌跡,進而導致熱氧圈的不均勻分布。本研究旨在建立一個二維的蒙地卡羅(Monte-Carlo)模型,並模擬出金星熱氧圈在此離子流的影響下可能的分布情形。


    From the detailed measurements in Venusian ionosphere by the Pioneer Venus Orbiter, it was well known that there is a large day-to-night flow of ionospheric plasma with the horizontal speed reaching a value as high as 5 km/s at 500-km altitude near the terminator. This large-scale anti-sunward convective motion could lead to a significant distortion of the hot oxygen corona maintained by oxygen atoms from O2+ dissociation recombination into a tadpole-like structure. A Monte-Carlo model is developed to simulate the two-dimensional configuration of such a hot oxygen corona.

    摘 要 i ABSTRACT ii ACKNOWLEDGEMENT iii CONTENTS iv LIST OF FIGURES v LIST OF TABLES vi 1. INTRODUCTION 1 1.1 Venus 1 1.1.1 Atmosphere 3 1.1.2 Ionosphere 5 1.2 The Escape of Oxygen in Atmosphere of Venus 8 1.3 Historical Review of Hot Oxygen Corona Simulation 12 2. MODEL 15 2.1 Description of the Program 15 2.2 Global Distributions of O2+ Ions and Neutral Gas Particles 16 2.3 The Flow Field of Ionospheric Plasma 20 2.4 Initial Energy-Probability Distribution of Hot Oxygen Atoms 23 2.5 Tracing Hot Oxygen Atoms through the Atmosphere 25 3. RESULTS AND DISCUSSION 27 3.1 Trajectories 27 3.2 Density distributions 30 4. CONCLUSIONS AND FUTURE WORKS 33 REFERENCES 34

    1. Basilevsky, A. T. & Head, J. W., 2003. The Surface of Venus. Reports on Progress in Physics, 66, 1699
    2. Catling, D. C. & Zahnle, K. J., 2009. The Planetary Air Leak. Scientific American, 300, 36.
    3. Cravens, T. E., Crawford, S. L., Nagy, A. F., & Gombosi, T. I., 1983. A Two-Dimensional Model of the Ionosphere of Venus. Journal of Geophysical Research, 88, 5595
    4. Fox, J. L. & Hać, A. B., 2009. Photochemical Escape of Oxygen from Mars: A Comparison of the Exobase Approximation to a Monte Carlo Method. Icarus, 204, 527
    5. Fox, J. L. & Sung, K. Y., 2001. Solar Activity Variations of the Venus Thermosphere / Ionosphere. Journal of Geophysical Research, 106, 21305
    6. Groller, H., 2008. Monte-Carlo Modelling of Atmospheric Constituents Created by Photochemical Processes. Master Thesis, University of Graz.
    7. Hodges Jr., R. R., 2000. Distributions of Hot Oxygen for Venus and Mars. Journal of Geophysical Research, 105, 6971
    8. Ip, W.-H., 1988. On a Hot Oxygen Corona of Mars. Icarus, 76, 135
    9. Ip, W.-H., 1990. The Fast Atomic Oxygen Corona Extent of Mars. Geophysical Research Letters, 17, 2289
    10. Jeans, J. H., 1925. The Dynamical Theory of Gases (4th Edition). Cambridge University Press.
    11. Kella, D., Vejby-Christensen, L., Johnson, P. J., Pedersen, H. B., & Andersen, L. H., 1997. The Source of Green Light Emission Determined from a Heavy-Ion Storage Ring Experiment. Science, 276, 1530
    12. Kim, Y. H., Son, S., Yi, Y. & Kim, J., 2001. A Non-Spherical Model for the Hot Oxygen Corona of Mars. Journal of the Korean Astronomical Society, 34, 25
    13. Kim, J., Nagy, A. F., Fox, J. L. & Cravens, T. E., 1998. Solar Cycle Variability of Hot Oxygen Atoms at Mars. Journal of Geophysical Research, 103, 29339
    14. Knudsen, W. C., Spenner, K., Miller, K. L., & Novak, V., 1980. Transport of Ionospheric O+ Ions across the Venus Terminator and Implications. Journal of Geophysical Research, 85, 7803
    15. Knudsen, W. C., Banks, P. M., & Miller, K. L., 1982. A New Concept of Plasma Motion and Planetary Magnetic Field for Venus. Geophysical Research Letters, 9, 765
    16. Krestyanikova, M. A. & Shematovich, V. I., 2005. Stochastic Models of Hot Planetary and Satellite Coronas: A Photochemical Source of Hot Oxygen in the Upper Atmosphere of Mars. Solar System Research, 39, 22
    17. Krestyanikova, M. A. & Shematovich, V. I., 2006. Stochastic Models of Hot Planetary and Satellite Coronas: A Hot Oxygen Corona of Mars. Solar System Research, 40, 384
    18. Kumar, S., Hunten, D. M., & Taylor Jr., H. A., 1981. H2 Abundance in the Atmosphere of Venus. Geophysical Research Letters, 8, 237
    19. Lammer, H. & Bauer, S. J., 1991. Nonthermal Atmospheric Escape from Mars and Titan. Journal of Geophysical Research, 96, 1819
    20. Lammer, H., Lichtenegger, H. I. M., Biernat, H. K., Erkaev, N. V., Arshukova, I. L., Kolb, C., Gunell, H., Lukyanov, A., Holmstrom, M., Barabash, S., Zhang, T. L. & Baumjohann, W., 2006. Loss of Hydrogen and Oxygen from the Upper Atmosphere of Venus. Planetary Space Science, 54, 1445
    21. Lammer, H., Lichtenegger, H. I. M., Kolb, C., Ribas, I., Guinan, E. F., Abart, R., & Bauer, S. J., 2003. Loss of Water from Mars: Implications for the Oxidation of the Soil. Icarus, 165, 9
    22. Lammer, H., Stumptner, W. & Bauer, S. J., 2000. Upper Limits for the Martian Exospheric Number Density during the Planet B/Nozomi Mission. Planetary Space Science, 48, 1473
    23. Lang, K. R., 2011. The Cambridge Guide to the Solar System (2nd Edition). Cambridge University Press
    24. Lichtenegger, H. I. M., Groller, H., Lammer, H., Kulikov, Yu. N., & Shematovich, V. I., 2009. On the Elusive Hot Oxygen Corona of Venus. Geophysical Research Letters, 36, 10204
    25. Luhmann, J. G., Kasprzak, W. T., & Russell, C. T., 2007. Space Weather at Venus and Its Potential Consequences for Atmosphere Evolution. Journal of Geophysical Research, 112, 13
    26. Lundin, R., 2011. Ion Acceleration and Outflow from Mars and Venus: An Overview. Space Science Reviews, 162, 309
    27. Markiewicz, W. J., Titov, D. V., Limaye, S. S., Keller, H. U., Ignatiev, N., Jaumann, R., Thomas, N., Michalik, H., Moissl, R., & Russo, P., 2007. Morphology and Dynamics of the Upper Cloud Layer of Venus. Nature, 450, 633
    28. McElroy, M. B., 1972. Mars: An Evolving Atmosphere. Science, 175, 443
    29. Nagy, A. F. & Cravens, T. E., 1988. Hot oxygen atoms in the upper atmospheres of Venus and Mars. Geophysical Research Letters, 15, 433
    30. Nagy, A. F., Cravens, T. E., Smith, S. G., Taylor Jr., H. A., & Brinton, H. C., 1980. Model Calculations of the Dayside Ionosphere of Venus: Ionic Composition. Journal of Geophysical Research, 85, 7795
    31. Nagy, A. F., Cravens, T. E., Yee, J.-H., & Steward, A. I. F., 1981. Hot Oxygen Atoms in the Upper Atmosphere of Venus. Geophysical Research Letters, 8, 629
    32. Niemann, H. B., Kasprzak, W. T., Hedin, A. E., Hunten, D. M., & Spencer, N. W., 1980. Mass Spectrometric Measurements of the Neutral Gas Composition of the Thermosphere and Exosphere of Venus. Journal of Geophysical Research, 85, 7817
    33. Patzold, M., Hausler, B., Bird, M. K., Tellmann, S., Mattei, R., Asmar, S. W., Dehant, V., Eidel, W., Imamura, T., Simpson, R. A., & Tyler, G. L., 2007. The Structure of Venus’ Middle Atmosphere and Ionosphere. Nature, 450, 657
    34. Piccioni, G., Drossart, P., Sanchez-Lavega, A., Hueso, R., Taylor, F. W., Wilson, C. F., Grassi, D., Zasova, L., Moriconi, M., Adriani, A., Lebonnois, S., Coradini, A., Bezard, B., Angrilli, F., Arnold, G., Baines, K. H., Bellucci, G., Benkhoff, J., Bibring, J. P., Blanco, A., Blecka, M. I., Carlson, R. W., Di Lellis, A., Encrenaz, T., Erard, S., Fonti, S., Formisano, V., Fouchet, T., Garcia, R., Haus, R., Helbert, J., Ignatiev, N. I., Irwin, P. G. J., Langevin, Y., Lopez-Valverde, M. A., Luz, D., Marinangeli, L., Orofino, V., Rodin, A. V., Roos-Serote, M. C., Saggin, B., Stam, D. M., Titov, D., Visconti, G., Zambelli, M., & the VIRTIS-Venus Express Technical Team, 2007. South-polar Features on Venus Similar to Those near the North Pole. Nature, 450, 637
    35. Shinagawa, H., 1996. A Two-Dimensional Model of the Venus Ionosphere: 1. Unmagnetized Ionosphere. Journal of Geophysical Research, 101, 26911
    36. Shinagawa, H., 2004. The Ionospheres of Venus and Mars. Advances in Space Research, 33, 1924
    37. Shizgal, B. D. & Arkos, G. G., 1996. Nonthermal Escape of the Atmospheres of Venus, Earth and Mars. Reviews of Geophysics, 34, 483
    38. Svedhem, H., Titov, D. V., Taylor, F. W., & Witasse, O., 2007. Venus as a More Earth-like Planet. Nature, 450, 629
    39. Taylor Jr., H. A., Brinton, H. C., Bauer, S. J., Hartle, R. E., Cloutier, P. A., & Daniell Jr., R. E., 1980. Global Observations of the Composition and Dynamics of the Ionosphere of Venus: Implications for the Solar Wind Interaction. Journal of Geophysical Research, 85, 7765
    40. Terada, N., Shinagawa, H., & Machida, S., 2004. Global Hybrid Model of the Solar Wind Interaction with the Venus Ionosphere: Ion Escape Processes. Advances in Space Research, 33, 161
    41. Whitten, R. C., McCormick, P. T., Merritt, D., Thompson, K. W., Brynsvold, R. R., Eich, C. J., Knudsen, W. C., & Miller, K. L., 1984. Dynamics of the Venus Ionosphere: A Two-Dimensional Model Study. Icarus, 60, 317
    42. Yee, J. H., 1980. Theoretical and Experimental Study on the Atomic Oxygen Corona in the Earth’s Atmosphere. Ph.D. thesis, University of Michigan, Ann Arbor.

    QR CODE
    :::