跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳嘉倫
Chia-Lun Wu
論文名稱: 異向含水層部分貫穿井溶質傳輸分析
Analysis of solute transport toward a partially penetrating extraction well in an anisotropic aquifer
指導教授: 陳瑞昇
Jui-Sheng Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
畢業學年度: 97
語文別: 中文
論文頁數: 103
中文關鍵詞: 捕集區縱向延散度水力傳導係數異向比部分貫穿井
外文關鍵詞: longitudinal dispersivity, capture zone, partially penetrating well, hydraulic conductivity anisotropy ratio
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 抽出處理法為傳統含水層整治技術,其方法為抽出含水層中受污染的地下水,降低其污染濃度至達到整治標準,有效的抽出處理系統設計應收集全部的污染物,並抽取最小量鄰近污染物的乾淨地下水。現地實務上,含水層只有部分垂直厚度受污染時,此時整治系統可以考慮採用部分貫穿井作為設計依據。本研究發展異向受壓含水層部份貫穿井溶質傳輸之數學模式,首先求解部分貫穿井抽水的穩態洩降解,利用洩降解可計算孔隙流速於水平與垂直方向之分量,所得流速可以建立二維圓柱座標移流-延散傳輸方程式,藉由Laplace轉換有限差分法求解,可得含水層中的溶質濃度分布;所得模式將用以分析井篩長度、含水層水力傳導係數異向比、縱向延散度及含水層延散度異向比等對溶質傳輸之影響,模擬結果顯示在含水層水力傳導係數異向比越大,縱向延散度越小的情況,將顯著影響部分貫穿井整治效率,其與全層貫穿井達到整治標準所需之時間差至2.5倍。本研究所發展之模式可作為部分貫穿井用於含水層整治系統設計之工具。


    Pump-and-treat techniques are often applied to extract the polluted groundwater and to reduce the concentration of the contaminants to an acceptable level. The design of an effective and efficient pump-and-treat system requires that the recovery wells collect the contaminant and withdraws the minimum amount of clean water adjacent to the contaminant plume. The installation of a partially penetrating well in which only a portion of the well casing is screened is becoming more common because it is very often the case that only a portion of the vertical thickness of the aquifer is contaminated. In this study, a novel mathematical model describing the solute transport around a partially penetrating well is presented. To build the new model, the radial and vertical components of the pore water velocity are first computed using an analytical solution for the steady-state drawdown distribution near a partially penetrating well. Next, the obtained radial and vertical components of the pore water velocity are incorporated into a two-dimensional advection-dispersion equation in cylindrical coordinates from which the solute transport equation is derived. The developed model is used to investigate the effects of the site-specific aquifer parameters on solute transport near a partially penetrating well. Results demonstrate that the effect of the partially penetrating well on solute transport is significant when there is a large hydraulic conductivity anisotropy ratio and small longitudinal dispersivity. The mathematical model presented herein provides a useful tool for designing an effective and efficient pump-and-treat system for partially penetrating well.

    摘要 ...........................................i Abstract ..........................................ii 誌謝 .........................................iii 圖目錄 ..........................................vi 表目錄 ..........................................ix 符號說明 ...........................................x 一、緒論 ...........................................1 1.1前言 ...........................................1 1-2文獻回顧 ..................................5 1-3研究目的 ..................................7 1-4研究流程 ..................................7 二、部分貫穿井水流與溶質傳輸數學模式 ................8 2-1水流方程式與邊界條件 ........................12 2-2溶質傳輸方程式與邊界條件 ........................19 2-3水流方程式求解 .................................26 2-4溶質傳輸方程式求解 ........................33 三、結果與討論 .................................41 3-1 模式驗證 .................................41 3-2 模擬參數與條件 .................................48 3-3污染團分布於整個含水層垂直厚度 ...............52 3-4污染團分布於含水層垂直厚度底部二公尺區域 ......64 四、結論與建議 ..................................82 4-1結論 ...........................................82 4-2 建議 ...........................................83

    [1]Mercer, J. W., D. C. Skipp, and D. Giffin., 1990. Basics of pump and treat groundwater remediation technology. U.S. Environmental Protection Agency. EPA-600/8-90/003.
    [2]Gorelick, S. M., R. A. Freeze, D. Donohue, and J. F. Keely, 1993. Groundwater Contamination, Optimal Capture and Contaminment, Lewis Publishers, Boca Raton, FL.385 pp.
    [3]U.S. EPA, 1997. Design Guidelines for Conventional Pump-and-Treat Systems, EPA/540/S-97/504.
    [4]Bair, E. S., T. D. Lahm, 1996. Variations in Capture-Zone Geometry of a Partially Penetrating Pumping Well in an Unconfined Aquifer. Ground Water, 34(5), 842-852.
    [5]Nicholson, R.V., J. A. Cherry, and E. J. Reardon, 1983. Migration of contaminants in groundwater at a landfill: A case study, 6. Hydrogeochemistry. Journal of Hydrology, 63, 131-176.
    [6]Javandel, I. and C. F. Tsang, 1986. Capture-zone type curves: A tool for aquifer cleanup. Ground water, 24(5), 616-625.
    [7]Hantush, M. S., 1964. Hydraulics of wells, in V.T Chow(editor), Advances in Hydroscience, vol. 1, 281-432. Academic Press, New York and London.
    [8]Faybishenko, B. A., I. Javandel, and P. A. Witherspoon, 1995. Hydrodynamics of the capture zone of a partially penetrating well in a confined aquifer. Water Resources Research, 31(4), 859-866.
    [9]Goldberg, V.M. 1976. Hydrogeological Prediction of Groundwater Quality in Water Supply Systems. Nedra, Moscow(in Russian). 151.
    [10]Kinzelbach, W. 1983. Sanierungsmassnahmen in vorfeld von trinkwasserfassungen. In: Vermeidung und Sanierung von Groundwasserverunreinigungen, DVGW-Schriftenreihe Wasser, Nr. 36, Eschbon, 93-107(in German).
    [11]Kinzelbach, W. 1986.Groundwater Modeling. Elsevier, New York.
    [12]Zlotnik, V. A., 1997. Effects of anisotropy on the capture zone of a partially penetrating well. Ground Water, 35(5), 842-847.
    [13]Muskat, M.,1937. The flow of homogeneous fluids through porous media. Mcgraw-Hill, New York.
    [14]Hantush, M. S.1961.Drawdown around a partially penetrating well. J. Hydrology. Div. Am. Soc. Civ. Eng. 87 (HY4), 83-98.
    [15]Conant, B. Jr., F. F. Akindunni, and R. W. Gillham, 1995. Effect of well-screen placement on recovery of vertically stratified contaminants. Ground Water, 33(3), 445-457.
    [16]Williams, P.D., 1991. Dilution effects during sampling of a 2-inch monitoring well in a confined aquifer. Master’s project. Environmental Engineering Dcpartment, University of Massachusetts at Lowell.
    [17]Cosler, D. J., 1997. Ground-water sampling and time-series evaluation techniques to determine vertical concerntration distributions. Ground Water, 35(5), 825-841.
    [18]Gelhar, L.W., C. Welty, K.R. Rehfeldt, 1992. A Critical Review of Data on Field-Scale Dispersion in Aquifers. Water Resources Research, 28(7), 1955-1974.
    [19]Ridolfi, L., S. Sordo, 1997. Hydrodynamic dispersion in an artesian during flow to a partially penetrating well. Journal of Hydrology, 201: 183-210.
    [20]Sudicky, E.A., 1989. The Laplace transform Galerkin technique: a time-continuous finite element theory and application to mass transport in groundwater. Water Resources Research, 25(8), 1833-1846.
    [21]Moridis, G.J., D.L. Reddel, 1991. The Laplace transform finite difference method for simulation of flow through porous media. Water Resources Research, 27(8), 1873-1884.
    [22]De Hoog, F.R., J. H. Knight, and A. N. stokes, 1982. An imporved method for numerical inversion of Laplace transforms. Journal on Scientific and Statistical Computing, 3(3), 357-366.
    [23]Crump, K.S., 1976. Numerical inversion of Laplace transforms using a Fourier Series approximation. Journal of Association for Computing Machinery, 23(1), 89-96.
    [24]Chen, C.S., G.D. Woodside, 1988. Analytical modeling for aquifer decontamination by pumping. Water Resources Research, 24(8), 1329-1338.
    [25]Chen, J.S., C.P. Liang, H.S. Gau, C.W. Liu, 2006. Mathematical model for formation decontamination by pumping with well bore mixing. Applied Mathematical Modelling, 30, 446–457.
    [26]Bear, J., 1979. Groundwater Hydraulics. McGraw-Hill, New York.
    [27]Visual Numerical, Inc. 1994. IMSL User’s Manual. Houston, Tex., 1, 159-161.
    [28]Visual Numerical, Inc. 1994. IMSL User’s Manual. Houston, Tex., 1, 827-830.

    QR CODE
    :::