跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳欣妤
HSIN-YU CHEN
論文名稱: 不同水生植物及其表面改質對重金屬吸附之研究
The Adsorption of Heavy Metals by Different Floating Macrophytes and Modified Biosorbent
指導教授: 李俊福
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 105
中文關鍵詞: 吸附重金屬改質活化植生復育
外文關鍵詞: adsorption, chemical modification, phytoremediation, floating macrophytes
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統上已有許多物化方法可用來移除溶液中之重金屬,然而工業廢水的多樣性,要得到較佳的金屬離子去除率是相當困難而且成本昂貴的。目前已有許多研究致力於發展低成本、可再利用且對環境友善之生物吸附劑來移除溶液中的有害物質。
    本研究利用台灣濕地常見浮水植物 (布袋蓮、水芙蓉及浮萍),探討其對金屬離子之吸附成效。本研究主要分為兩個部分,一為將植物製備成吸附劑並對其進行改質探討其對金屬離子之吸附成效;二為水耕試驗,將植物栽種在含銅工業廢水之溶液中,觀察其生長情形與水溶液中銅離子濃度之變化。
    由實驗結果可得知植物所製備而成之吸附劑表面羧基與氫氧基含量越多,對金屬之吸附效果越好,經過 NaOH 改質活化後之吸附劑較其他改質劑效果佳,因 NaOH 可移除植物表面雜質使羧基與氫氧基得以裸露,由 FTIR 圖譜可看出具有明顯羧基與氫氧基之吸收波峰。經過吸附後,羧基與氫氧基之吸收波峰明顯消減許多,表示吸附劑主要是藉由表面羧基與氫氧基使重金屬鍵結於其上而達到移除重金屬的目的。
    浮生植物在 20 mg/L 之 Cu2+ 溶液中生長,隨著時間的增加,水溶液中 Cu2+ 濃度逐漸下降,大約在第 4 ~ 5 天該濃度已降至銅之放流水標準 3 mg/L 以下。經質量平衡得知水溶液中減少的 Cu2+ 與植物體內增加的量大約一致,但植物體內若累積過多的 Cu2+ 時則會造成浮生植物的毒害,甚至死亡。


    Traditionally, there are a lot of chemical and physical methods to remove heavy metal ions from industrial sewage. Due to the variety of industrial effluent, it is very difficult to get inexpensive good removal efficiency. Presently, many studies are devoted to develop low cost and reusable biosorbent to get rid of harmful substance in the solution.
    In this study we use common floating macrophytes in Taiwan ( Eichhomia crassipes, Pistia stratiotes, Lemna minor ) as the raw materials to investigate their adsorption capacity of metal ions. The experiments include two parts, one is to prepare the adsorbent and use different chemicals to modify it, and to compare the capacity of adsorption of heavy metal. Another is to plant the plants in industrial discharge which contained the metal ion, observe the growth of plants and the metal ions concentration change in solution during the plant’s growth.
    The experimental results show that the adsorbent prepared from the plants contained more carboxyl and hydroxyl group has higher capacity to adsorp the heavy metals. The FTIR spectra showed that there are carboxyl groups and hydroxyl groups in biosorbents, which are able to react with heavy metal ions obviously in aqueous solution. The adsorbent modified using NaOH is better than other modifier, due to NaOH.
    Three species of floating plants were planted in industrial discharge which contain copper ion. In 20 mg-Cu/L system, the copper concentration decreased with the plant growth. The copper concentration decreased under the effluent standards 3 mg/L after 3 to 5 days. By the mass balance, we know that the amount of copper decrease in solution is equal to the amount increase in the plants. If plants accumulate too much copper, it will be poisoned even leads to fatal.

    目錄 I 圖目錄 V 表目錄 VIII 第一章 前言 1 1-1 研究緣起 1 1-2 研究目的 3 第二章 文獻回顧 4 2-1 重金屬 4 2-1-1 重金屬之定義 4 2-1-2 重金屬污染來源 4 2-1-3 重金屬在水環境的遷移方式 5 2-1-4 重金屬放流水標準 5 2-2 吸附機制與吸附模式 7 2-2-1 物理吸附 8 2-2-2 化學吸附 8 2-2-3 吸附等溫方程式 9 2-2-4 吸附動力模式 11 2-3 傳統去除重金屬之方法 17 2-3-1 化學沉澱法 17 2-3-2 離子交換法 17 2-3-3 薄膜處理 18 2-3-4 活性碳吸附 18 2-4 台灣濕地常見水生植物 19 2-4-1 布袋蓮 21 2-4-2 水芙蓉 22 2-4-3 浮萍 23 2-5 生物對重金屬之吸附 27 2-5-1 生物吸附重金屬之研究 28 2-5-2 植物表皮層 ( cuticle ) 29 第三章 研究方法 31 3-1 實驗內容 31 3-2 實驗設備 34 3-3 實驗藥品材料 38 3-4 實驗方法 39 3-4-1 乾燥植體之吸附試驗 39 3-4-1-1 乾燥植體吸附劑之製備 39 3-4-1-2 乾燥植體吸附劑之改質 39 3-4-1-3 吸附試驗 41 3-4-1-4 pH之影響 41 3-4-2 水耕試驗 42 3-4-2-1 植物之種類 42 3-4-2-2 植物培養方法 45 3-4-2-3 實驗系統 46 3-4-3 觀察項目與分析方法 46 3-4-3-1 植物特性及組成分析 46 3-4-3-2 重金屬含量分析 47 第四章 結果與討論 49 4-1 植物基本特性 49 4-1-1 BDL 根莖葉之表面特性 49 4-1-2 乾燥植體吸附劑之基本特性 54 4-1-3 乾燥植體吸附劑改質後之基本特性 61 4-2 pH 值對金屬離子吸附之影響 69 4-3 水生生物對重金屬之吸附 73 4-3-1 乾燥植體吸附劑吸附模式 73 4-3-2 吸附劑吸附重金屬後之特性差異 77 4-4 植體改質後對重金屬之吸附 80 4-4-1 乾燥植體改質吸附劑吸附模式 80 4-4-2 乾燥植體改質吸附劑吸附金屬前後之特性比較 85 4-5 水耕試驗結果 87 4-5-1 水芙蓉 88 4-5-2 浮萍 93 4-5-3 布袋蓮 95 4-6 各吸附劑與水耕試驗吸附之比較 96 第五章 結論與建議 98 5-1 結論 98 5-2 建議 100 參考文獻 101

    參考文獻
    [1] "第六章 農地土壤污染調查及改善," 土壤及地下水污染整治年報, pp. 6-1~6-18, 2007
    [2] P. R. P. a. K. M. Paknikar, "Biosorption of Lead, Cadmium, and Zinc by Citrobacter Strain MCM B-181 Characterization Studies," Biotechnol. Prog, vol. 15, pp. 228-237, 1999.
    [3] Y.-S. Ho, "Removal of copper ions from aqueous solution by tree fern," Water Research, vol. 37, pp. 2323-2330, 2003.
    [4] A. Nakajima and T. Sakaguchi, "Recovery and removal of uranium by using plant wastes," Biomass, vol. 21, pp. 55-63, // 1990.
    [5] A. Saeed, M. W. Akhter, and M. Iqbal, "Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent," Separation and purification technology, vol. 45, pp. 25-31, 2005.
    [6] U. Kumar and M. Bandyopadhyay, "Sorption of cadmium from aqueous solution using pretreated rice husk," Bioresource technology, vol. 97, pp. 104-109, 2006.
    [7] Z. Aksu and İ. A. İşoğlu, "Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp," Process Biochemistry, vol. 40, pp. 3031-3044, 2005.
    [8] K. Abdelrahim and H. Ramaswamy, "High temperature/pressure rheology of carboxymethyl cellulose (CMC)," Food research international, vol. 28, pp. 285-290, 1995.
    [9] D. Charpentier, G. Mocanu, A. Carpov, S. Chapelle, L. Merle, and G. Müller, "New hydrophobically modified carboxymethylcellulose derivatives," Carbohydrate polymers, vol. 33, pp. 177-186, 1997.
    [10] X. Li, Y. Tang, Z. Xuan, Y. Liu, and F. Luo, "Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd 2+ from aqueous solution," Separation and Purification Technology, vol. 55, pp. 69-75, 2007.
    [11] C. Garbisu and I. Alkorta, "Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment," Bioresource technology, vol. 77, pp. 229-236, 2001.
    [12] 何國華, "植生復育法的介紹," 中興工程顧問股份有限公司.
    [13] J. H. Duffus, "" Heavy metals" a meaningless term?(IUPAC Technical Report)," Pure and Applied Chemistry, vol. 74, pp. 793-807, 2002.
    [14] "工業污染防治季刊,第 86 期," 2003.
    [15] 行政院環境保護署環署水字第1030005842號令修正發布第二條條文, "放流水標準," 2014.
    [16] P. Harriott and A. T. Y. Cheng, "Kinetics of spent activated carbon regeneration," AIChE journal, vol. 34, pp. 1656-1662, 1988.
    [17] K. Sing, K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, et al., "Reporting physisorption data for gas/solid systems," Pure Appl. Chem, vol. 54, p. 2201, 1982.
    [18] W. J. Thomas and B. D. Crittenden, Adsorption technology and design: Butterworth-Heinemann, 1998.
    [19] D. M. Ruthven, "Principles of adsorption and adsorption processes," 1984.
    [20] I. Langmuir, "Adsorption of gases by solids," J. Am. Chem. Soc, vol. 38, p. 2267, 1916.
    [21] I. Langmuir, "The adsorption of gases on plane surfaces of glass, mica and platinum," Journal of the American Chemical society, vol. 40, pp. 1361-1403, 1918.
    [22] 歐陽嶠暉, 下水道工程學 長松文化興業股份有限公司, 2004.
    [23] 賴明洲, 薛怡珍, 黃士嘉, and 楊璦華, "濕地植物去污淨化功能與選種建議," 台灣林業, vol. 30, pp. 4-51, 2004.
    [24] 蘆洲志願服務工作隊/環境綠化美化組, "布袋蓮," ed: 國立新竹生活美學館.
    [25] 林仲剛, "水上人家話布袋蓮," 國立自然科學博物館館訊, vol. 246, 2008.
    [26] 林仲剛, "水上人家話浮萍," 國立自然科學博物館館訊, 2008.
    [27] I. Villaescusa, N. Fiol, M. a. Martı́nez, N. Miralles, J. Poch, and J. Serarols, "Removal of copper and nickel ions from aqueous solutions by grape stalks wastes," Water Research, vol. 38, pp. 992-1002, 2004.
    [28] K. Vijayaraghavan, K. Palanivelu, and M. Velan, "Biosorption of copper (II) and cobalt (II) from aqueous solutions by crab shell particles," Bioresource technology, vol. 97, pp. 1411-1419, 2006.
    [29] B. Volesky and Z. Holan, "Biosorption of heavy metals," Biotechnology progress, vol. 11, pp. 235-250, 1995.
    [30] D. Kratochvil and B. Volesky, "Advances in the biosorption of heavy metals," Trends in biotechnology, vol. 16, pp. 291-300, 1998.
    [31] Y. Kacar, Ç. Arpa, S. Tan, A. Denizli, Ö. Genç, and M. Y. Arıca, "Biosorption of Hg (II) and Cd (II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium," Process Biochemistry, vol. 37, pp. 601-610, 2002.
    [32] M. Yakup Arıca, Ç. Arpa, A. Ergene, G. Bayramoğlu, and Ö. Genç, "Ca-alginate as a support for Pb (II) and Zn (II) biosorption with immobilized Phanerochaete chrysosporium," Carbohydrate Polymers, vol. 52, pp. 167-174, 2003.
    [33] 賴姻足, "以固定化綠膿桿菌球移除溶液中之重金屬," 國立雲林科技大學化學工程系碩士論文2004.
    [34] I. A. H. Schneider and J. Rubio, "Sorption of heavy metal ions by the nonliving biomass of freshwater macrophytes," Environmental science & technology, vol. 33, pp. 2213-2217, 1999.
    [35] L. H. Velazquez-Jimenez, A. Pavlick, and J. R. Rangel-Mendez, "Chemical characterization of raw and treated agave bagasse and its potential as adsorbent of metal cations from water," Industrial Crops and Products, vol. 43, pp. 200-206, 2013.
    [36] J. T. Martin and B. E. Juniper, "The cuticles of plants," The cuticles of plants., 1970.
    [37] E. Domínguez, J. A. Heredia‐Guerrero, and A. Heredia, "The biophysical design of plant cuticles: an overview," New phytologist, vol. 189, pp. 938-949, 2011.
    [38] M. Fujita, "The presence of two Cd-binding components in the roots of water hyacinth cultivated in a Cd2+-containing medium," Plant and Cell Physiology, vol. 26, pp. 295-300, 1985.
    [39] K. K. Krishnani, X. Meng, C. Christodoulatos, and V. M. Boddu, "Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk," J Hazard Mater, vol. 153, pp. 1222-34, May 30 2008.
    [40] L. Deng, M. Geng, D. Zhu, W. Zhou, A. Langdon, H. Wu, et al., "Effect of chemical and biological degumming on the adsorption of heavy metal by cellulose xanthogenates prepared from Eichhornia crassipes," Bioresource Technology, vol. 107, pp. 41-45, 3// 2012.
    [41] X.-s. Wang and Y. Qin, "Equilibrium sorption isotherms for of Cu2+ on rice bran," Process Biochemistry, vol. 40, pp. 677-680, 2005.
    [42] S. Ahrland, J. Chatt, and N. Davies, "The relative affinities of ligand atoms for acceptor molecules and ions," Quarterly Reviews, Chemical Society, vol. 12, pp. 265-276, 1958.

    QR CODE
    :::