| 研究生: |
張光華 Kuang-hua Chang |
|---|---|
| 論文名稱: |
電化學放電加工應用於單晶矽表面粗糙化之研究 Study on texturing of mono-silicon by using Electrochemical Discharge Machining |
| 指導教授: |
顏炳華
Piin-hwa Yan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 電化學放電加工 、表面粗糙化 、單晶矽 |
| 外文關鍵詞: | Electrochemical discharge machining, texture, p-type silicon |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了提高太陽能電池光轉化效率,現今加工法大多使用高強酸鹼在矽晶片表面進行化學蝕刻,使其表面粗糙化藉以增加光反射次數,但是化學蝕刻法不僅加工時間長且對環境危害較大。相較於傳統太陽能表面粗糙化,本研究提出以電化學放電對於P型單晶矽進行表面粗糙化加工,加工時間短且相較於傳統化學蝕刻出的金字塔結構或是火山坑結構,電化學放電加工法可加工出較高表面粗糙度且多孔狀結構。
本研究使用不鏽鋼電極為負極,正極以石墨作為輔助電極,電解液為氫氧化鉀,加工參數為加工電壓、加工時間、加工間隙、電解液濃度、添加液濃度、脈衝頻率與衝擊係數等,以電化學放電加工粗糙化後進行表面粗糙度量測,並利用三維雷射掃描式顯微鏡及掃描式電子顯微鏡觀察表面形貌。
實驗過程中發現, 添加適當濃度的乙醇可以幫助孔洞擴大並且提高表面粗糙化結果。在適當的加工參數加工間隙為200μm、電壓為48V、氫氧化鉀濃度為3M、乙醇濃度為4wt%、電化學放電加工1分鐘後其表面粗糙度可由0.417μm升至0.915 μm。利用積分式粗糙面反射率量測儀檢測,測量結果顯示加工前平均反射率為29.6%,經表面粗糙化後降低至12.7%。
In order to improve the light conversion efficiency of solar cells, recently processing method use the strong chemical substances to etch silicon surface. Although acid or alkaline texturing can increase the frequency of the light reflecting, this kind of texturing process not only has long processing time but also is harmful to the environment. Compared with the conventional surface texturing process which generates chemical etched pyramid structure or crater structure , this study proposes texturing P type mono-crystalline silicon by electrochemical discharge machining (ECDM). ECDM method has the advantage of short processing time and can generate a higher surface roughness and the porous structure.
In this study, stainless steel was used as negative electrode. The graphite was used as the positive electrode acting as the auxiliary electrode. The potassium hydroxide was used as the electrolyte. The processing parameters include the machining voltage, the processing time, the machining gap, the electrolyte concentration, the additive agent concentration, pulse frequency and duty factor, etc. The surface roughness was measured using surface roughness tester. The surface morphology was observed using SEM and three-dimensional laser scanning microscope.
The result of experiments reveals that appropriate concentrations of ethanol can expand the size of the pores and enhance surface roughening effect. The appropriate processing parameters are a machining gap of 200μm, voltage of 48V, concentration of potassium hydroxide of 3M, concentration of ethanol of 4%. The electrochemical discharge machined surface roughness was increased from 0.417μm to 0.915μm using one minute processing time. The average reflectance rate of the textured surface was decreased from 29.6% to 12.7% measuring by using integration spectroscopic reflectometer.
[1] Parretta, A. Sarno, P. Tortora, H. Yakubu, P. Maddalena, J. Zhao,A. Wang, “Angle-dependent reflectance measurements on photovoltaic materials and solar cells”, optics communications, Vol.172, pp.139-151,1999.
[2] Kurafuji and K. Suda, Electrical discharge drilling of glass, Annals of the CIRP ,16 (1968) 415–419.
[3] V.Reghuram, Expermental observations of the ECD phenomena, Dissertation Thesis, Indian Institute of Technology, Kanpur, India, 1983
[4] Basak and A.Ghosh, Mechanism of spark generation during electrochemical discharge machining: a theoretical model and experimental verification, Journal of Material Processing Technology,62(1996) 46-53.
[5] V. K. Jain, P. M. Dixit, and P.M. Pandey, On the Analysis of Electro Chemical Spark Machining Process, International Journal of Machine Tools & Manufacture, (1999)165-186.
[6] Bhattacharyya, B. N. Doloi, and S. K. Sorkhel ,Experimantal analysis an the electrochemical conference on precision engineering, ICPE, Taipei, Taiwan, (1997)715720.
[7] C.T. Yan, S.S. Ho, and B.H. Yan, Micro hole machining of borosilicate glass trough electrochemical discharge machining (ECDM), Key Engineering Materials, 196 (2001) 149–166.
[8] Kulkarmi, R.Sharan and G.K. Lai, "An experiment study of discharge mechanism in electrochemical discharge machining," International Journal of Machine Tools and Manufacture, Vol.42,pp.1121-1127,2002.
[9] V.Fascio, R.Wuthrich, and H.Bleular, Spark assisted chemical engraving in the light of electrochemistry, Electrochimica Acta, 49(2004)3997-4003.
[10] R.Wuthrich, V.Fascio and H.Bleuler,"A stochastic model for electrode effects,"Electrochimica Acta , Vol.49,pp.4005-4010,2004
[11] V.Fascio, R. Wuthrich and H.Bleuler,"Spark assisted chemical engraving in the light of electrochemistry" Electrochimica Acta, Vol.49,pp.3997-4003,2004
[12] V.Fascio, R. Wuthrich and H.Bleuler,"Spark assisted chemical engraving in the light of electrochemistry" Electrochimica Acta, Vol.49,pp.3997-4003,2004
[13] R. Wüthrich, U. Spaetler and H. Bleuler, “The current signal in spark assisted chemical engraving (SACE), what does it tell us? ”, Journal of Micromechanics and Microengineering, Vol. 16, pp. 779-85, 2006.
[14] M. Jalali, P. Maillard and R. Wüthrich, “Toward a better understanding of glass gravity-feed micro-hole drilling with electrochemical discharges”, Journal of Micromechanics and Microengineering, Vol. 19, 045001, 2008.
[15] C.K Yang, C.P. Cheng, C.C. Mai, A.C. Wang, J.C. Hung, B.H. Yan, "Effect of surface roughness of toolelectrode material in ECDM performance," Internal Journal of Machine Tools & Manufacture, Vol.50,pp.1088-1096,2010.
[16] P. Allongue, P. Jiang, V. Kirchner, A. L. Trimmer, and R. Schuster,“Electrochemical Micromachining of p-Type Silicon”, J. Phys. Chem. B,Vol. 108, pp. 14434-14439 (2004).
[17] 紀朝傑,“電化學矽加工之研究與分析",國立中央大學碩士論文 (2008)。
[18] 張皓瑋,“電解液對電化學矽加工影響性之分析與研究",國立中央大學碩士論文 (2013)。
[19] 王晨宇,“單晶矽材料電化學放電鑽孔及同軸電度之研究",國立中央大學碩士論文 (2013)。
[20] Gee, J. and Wenham, S., 1993 Advanced Processing of Silicon Solar Cells, Tutorial Notebook, 23rd. IEEE Photovoltaic Specialists Conf.
[21] King, D.L. and Buck, M.E., 1991. Experimental Optimization of an Anisotropic Etching Process for Random Texturization fo Silicon Solar Cells, 1991. Proc. 22nd IEEE Photovoltaic Specialists Conf., pp. 303-308.
[22] Sarti, D., Le, Q.N., Bastide, S., Goaer, G. and Ferry, D., 1995. Thin Industrial Multicrystalline Solar Cells and Improved Optical Absorption, Proc 13th European Photovoltaic Solar Energy Cof., pp.25-28
[23] Einhaus, R., Van kerschaver, E., Szluficik, J., Nijs, J. and Mertens, R., 1997. Isotropic texturing of texturing of multicrystalline silicon wafers with acidic texturing solutions, Proc. 26th IEEE Photovoltaic Specialists Conf. pp. 167-170
[24] P.K. Singh*, R. Kumar, M. Lal, S.N. Singh, B.K. Das "Electiveness of anisotropic etching of silicon in aqueous alkaline solutions", Solar Energy Materials & Solar Cells 70 (2001) 103}113
[25] Zubel*, M. Kramkowska"Etch rates and morphology of silicon (h k l) surfaces etched in KOH and KOH saturated with isopropanol solutions",Sensors and Actuators A 115 (2004) 549–556
[26] Bhattacharyya, B. N. Doloi, S. K. Sorkhel, “Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials ”, Journal of Materials Processing Technology, Vol. 95, pp. 145-154, 1999.
[27] V. Fascio, R. Wüthrich, H. Bleuler, “Spark assisted chemical engraving in the light of electrochemistry ”, Electrochimica Acta, Vol. 49, pp. 3997-4003, 2004.