跳到主要內容

簡易檢索 / 詳目顯示

研究生: 藍瑋宣
Wei-hsuan Lan
論文名稱: 以水熱法製備水系鈉離子電池NaTi2(PO4)3負極材料
The sodium ion battery negative material NaTi2(PO4)3 prepared by hydrothermal method to apply in aqueous systems
指導教授: 林景崎
Jing-chie Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 139
中文關鍵詞: 水熱法磷酸鈉鈦負極鈉離子電池鈉超離子導體
外文關鍵詞: Hydrothermal, NaTi2(PO4)3, anode, sodium ion battery, NASICON
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以水熱法合成鈉超離子導體(NASICON)-磷酸鈉鈦,藉改變合成參數,如反應體積、反應時間、前驅物濃度及界面活性劑濃度,可獲得奈米顆粒;並添加不同比重之碳源進行碳包覆,增進其導電性,以利後續電池性能量測。經X光繞射儀(XRD)分析得知: 水熱法合成可獲得結晶性良好之磷酸鈉鈦;掃描式電子顯微鏡(SEM)觀察: 磷酸鈉鈦粉末之平均粒徑範圍約為100 ~ 500 nm。經碳包覆後,由拉曼(Ramam)光譜分析偵測出碳特徵訊號、熱重分析(TGA)得知包覆後碳含量依碳源添加量不同約3 wt%、6wt%,穿透式電子顯微鏡(TEM)觀察可確認碳包覆及其形貌。先後以三極式電化學系統量測循環伏安曲線、二級式鈕扣電池量測鈉離子電池之性能。最佳合成參數及碳包覆含量之樣品其於不同充放電速率(0.2、0.5、1、2、5C)下展現出優異電容量(121、114、110、102、67mAh/g)、庫倫效率除首圈外,皆高達99%以上、放電電容量維持率亦維持在95%以上;經200次充放電循環測試後,仍保持約82%之放電電容量,且由電化學交流阻抗分析表明,阻值無明顯上升,顯示以水熱法合成之鈉超離子導體(NASICON)-磷酸鈉鈦在作為水系鈉離子電池負極材料極具潛力。


    Nano particle of sodium titanium phosphate belonging to sodium super-ionic conductor (NASICON)-type were successfully prepared by hydrothermal method under different synthetic parameters. With appropriate carbon-coating can improve material conductivity thus possibly suitable for making negative electrodes of sodium-ion batteries. From X-ray diffraction (XRD), which results revealed well crystalline structure of NaTi2(PO4)3 by hydrothermal method. Examination by field-emission scanning electron microscope (FE-SEM), the powders indicated their particle size in the range from 100 nm to 500 nm depending upon the experimental conditions. After coating by carbon, Raman spectroscopy demonstrated the D-band and G-band of carbon. The result of thermal gravimetric analysis (TGA) displayed that the carbon content was about 3wt%, 6wt% depending upon content of carbon source. The presence of carbon coating could be directly observed through by transmission electron microscope. Standard three-electrode cell was employed to conduct the cyclic voltammetry; two-electrode system via a coin cell was carried out for the test of battery performance, respectively. The optimal results revealed that C-coated nanoparticle NaTi2(PO4)3/C exhibited excellent electrochemical performance with high specific capacities (121, 114, 110, 102, 67mAh/g), high coulomb efficiency (99%) except first cycle and well discharge capacity retention (95%) at different charge/discharge rate (0.2, 0.5, 1, 2, 5C). A delivery of ~82% discharge capacity retention after 200 cycles and no obvious fading for impedance indicated that sodium titanium phosphate nano powders prepared in this work provided a potential material to prepare the anode used in aqueous sodium ion battery.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 x 圖目錄 xi 一、緒論 1 1-1前言 1 1-2 鈉離子電池發展背景 3 1-3鈉離子電池基本工作原理 4 1-4研究動機與目的 5 二、文獻回顧 8 2-1負極材料種類 8 2-1-1 碳材 8 2-1-2 金屬化合物 10 2-1-3 合金 13 2-2磷酸鈉鈦介紹 14 2-2-1 製程方法 14 2-2-2 電極材料應用 15 2-3奈米化 17 2-4界面活性劑 19 2-4-1界面活性劑之性質及種類 20 2-4-2 P123非離子型界面活性劑 21 三、研究方法 24 3-1實驗規劃 24 3-2實驗藥品 24 3-3 NaTi2(PO4)3合成條件 25 3-4實驗步驟 26 3-4-1前驅物溶液調配 26 3-4-2材料合成 27 3-4-3反應後產物洗淨、烘乾 27 3-4-4界面活性劑去除 27 3-4-5磷酸鈉鈦之碳包覆 28 3-4-6電極製備 28 3-5 材料鑑定分析 28 3-5-1場發射掃描式電子顯微鏡 28 3-5-2 X光粉末繞射儀 29 3-5-3高解析掃描穿透式電子顯微鏡 30 3-5-4拉曼光譜分析 31 3-5-5同步熱重分析儀 32 3-6 材料電化學分析 32 3-6-1量測系統 32 3-6-2循環伏安法 32 3-6-3充放電速率測試材料電化學性質 33 3-6-4充放電壽命 34 3-6-5電化學阻抗分析 34 四、結果 36 4-1材料合成 37 4-1-1不同水熱反應體積影響 37 4-1-1-1 XRD繞射晶體結構分析 38 4-1-1-2 FE-SEM表面形貌及粒徑大小觀察 38 4-1-2不同水熱反應時間影響 39 4-1-2-1 XRD繞射晶體結構分析 40 4-1-2-2 FE-SEM表面形貌及粒徑大小觀察 40 4-1-3不同前驅物濃度影響 41 4-1-3-1 XRD繞射晶體結構分析 42 4-1-3-2 FE- SEM表面形貌及粒徑大小觀察 42 4-1-4不同界面活性劑濃度影響 43 4-1-4-1 XRD繞射晶體結構分析 44 4-1-4-2 FE-SEM表面形貌及粒徑大小觀察 44 4-2碳包覆鑑定 45 4-2-1 Raman光譜分析 46 4-2-2 TGA熱重分析 47 4-2-3 TEM穿透式電子顯微鏡 47 4-2-3-1相鑑定 47 4-2-3-2晶粒形貌觀察 48 4-2-3-3碳包覆形貌觀察 48 4-3電化學性質量測 49 4-3-1循環伏安法 49 4-3-2表面形貌及粒徑大小對電池性能之影響 49 4-3-2-1放電電壓對電容量曲線圖 49 4-3-2-2充放電可逆性 50 4-3-2-3放電電容量維持率與充放電庫倫效率 51 4-3-3碳包覆含量對電池性能之影響 51 4-3-3-1放電電壓對電容量曲線圖 51 4-3-3-2循環壽命測試 52 4-3-3-3電化學交流阻抗分析 53 五、討論 54 5-1材料合成 54 5-1-1不同水熱反應體積影響 54 5-1-1-1 XRD繞射晶體結構分析 54 5-1-1-2 FE-SEM表面形貌及粒徑大小觀察 54 5-1-2 不同水熱反應時間影響 55 5-1-2-1 XRD繞射晶體結構分析 55 5-1-2-2 FE-SEM表面形貌及粒徑大小觀察 56 5-1-3 不同前驅物濃度影響 57 5-1-3-1 XRD繞射晶體結構分析 57 5-1-3-2 FE-SEM表面形貌及粒徑大小觀察 58 5-1-4 不同界面活性劑濃度影響 58 5-1-4-1 XRD繞射晶體結構分析 58 5-1-4-2 FE-SEM表面形貌及粒徑大小觀察 59 5-2碳包覆鑑定 61 5-2-1 Raman光譜分析 61 5-2-2 TGA熱重分析 61 5-2-3 TEM穿透式電子顯微鏡 62 5-2-3-1相鑑定 62 5-2-3-2晶粒形貌觀察 63 5-3電化學性質量測 64 5-3-1循環伏安法 64 5-3-2表面形貌及粒徑大小對電池性能之影響 64 5-3-2-1放電電壓對電容量曲線圖 64 5-3-2-2充放電可逆性 66 5-3-2-3放電電容量維持率與充放電庫倫效率 67 5-3-3碳包覆含量對電池性能之影響 67 5-3-3-1放電電壓對電容量曲線圖 67 5-3-3-2循環壽命測試 68 5-3-3-3電化學交流阻抗分析 70 六、結論 72 七、未來展望 75 八、參考文獻 76

    [1] M. D. Slater, D. Kim, E. Lee, C. S. Johnson, Advanced Functional Materials. 23, 947–958 (2013).
    [2] V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. C. G. T. Rojo, Energy Environmental Science. 5, 5884 (2012).
    [3] H. X. Yang, J. F. Qian, Journal of Inorganic Materials. 11, 1165-07 (2013).
    [4] W. Li, J. R. Dahn, Science. 264(5162), 1115−1118 (1994).
    [5] S. W. Kim, D. H. Seo, X. Ma, G. Ceder, K. Kang, Advance Energy Materials. 2, 710–721 (2012).
    [6] Z. Li, D. Young, K. Xiang, W. C. Carter, Y.M. Chiang. Advanced Energy Materials. (2012).
    [7] C. Delmas, A. Nadiri, J. L. Soubeyroux, Solid State Ion. 491, 28–30 (1988).
    [8] S. I. Park, I. Gocheva, S. Okada, J. I. Yamaki, Journal of Electrochemical Society. 158, A1067-A1070 (2011).
    [9] C. Delmas, F. Cherkaoui, A. Nadiri, P. Hagenmuller, Materials Research Bulletin. 22, 631 (1987).
    [10] R. C. Asher, Journal of Inorganic Nuclear Chemistry. 10, 238 (1959).
    [11] P. Ge, M. Fouletier, Solid State Ionics. 30, 1172(1988).
    [12] D. A. Stevens, J. R. Dahn, Journal of Electrochemical Society. 148, A803 (2001).
    [13] M. M. Doeff, Y. Ma, S. J. Visco, L. C. D. Jonghe, Journal of Electrochemical Society. 140, L169 (1993).
    [14] R. Alcantara, J. M. J. Mateos, J. L. Tirado, Electrochemical Society. 149, A201 (2002).
    [15] E. Zhecheva, R. Stoyanova, J. M. Jiménez-Mateos, R. Alcántara,
    P. Lavela, J. L. Tirado, Carbon. 40, 2301 (2002).
    [16] R. Alcántara, J. M. Jiménez-Mateos, P. Lavela, J. L. Tirado, Electrochemical Communication. 3, 639 (2001).
    [17] P. Thomas, J. Ghanbaja, D. Billaud, Electrochemical Acta. 45, 423 (1999).
    [18] M. Dubois, D. Billaud, Electrochemical Acta. 47, 4459 (2002).
    [19] M. Dubois, A. Naji, D. Billaud, Electrochemical Acta. 46, 4301 (2001).
    [20] R. Alcantara, P. Lavela, G. F. Ortiz, J. L. Tirado, Electrochemical Solid-State Letters. 8, A222–A225 (2005).
    [21] D. A. Stevens, J. R. Dahn, Journal of The Electrochemical Society. 147, 1271–1273 (2000).
    [22] S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Energy Environmental Science. 4, 3342–3345 (2011).
    [23] P. Thomas, D. Billaud, Electrochim. Acta. 46, 39–47 (2000).
    [24] J. R. Dahn, T. Zheng, Y. Liu, J. S. Xue, Science. 270, 590–593 (1995).
    [25] A. Maazaz, C. Delmas, P. Hagenmuller, Journal of Inclusion Phenomena Macro Chemistry. 1, 45 (1983).
    [26] P. Senguttuvan, G. Rousse, V. Seznec, J. M. Tarascon, M. R. Palacin, Chemical Materials. 23, 4109 (2011).
    [27] H. Xiong, M. D. Slater, M. Balasubramanian, C. S. Johnson, T. Rajh, Journal of Physical Chemistry Letters. 2, 2560–2565 (2011).
    [28] C. Didier, M. Guignard, C. Denage, O. Szajwaj, S. Ito, I. Saadoune, Electrochemical Solid-State Letters. 14, A75 (2011).
    [29] D. Hamani, M. Ati, J. M. Tarascon, P. Rozier, Electrochemical Communication.13, 938 (2011).
    [30] H. Liu, H. Zhou, L. Chen, Z. Tang, W. Yang, Journal of Power Sources. 196, 814 (2011).
    [31] M. Armand, J. M. Tarascon, Nature. 451, 652 (2008).
    [32] M. R. Palacin, Chemical Society Reviews. 38, 2565 (2009).
    [33] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon, Nature. 407, 496 (2000).
    [34] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. VanSchalkwijk, Nature Materials. 4, 366 (2005).
    [35] R. Alcantara, M. Jaraba, P. Lavela, J. L. Tirado, Chemical Materials. 14, 2847 (2002).
    [36] T. B. Kim, J. W. Choi, H. S. Ryu, G. B. Cho, K. W. Kim, J. H. Ahn, K. K. Cho, H. J. Ahn, Journal of Power Sources. 174, 1275 (2007).
    [37] J. S. Kim, G. B. Cho, K. W. Kim, J. H. Ahn, G. Wang, H. J. Ahn, Current Applied Physics. 11, S215 (2011).
    [38] X. Liu, S. Kang, J. Kim, H. Ahn, S. Lim, I. Ahn, Rare Metals. 30, 5 (2011).
    [39] J. S. Kim, H. J. Ahn, H. S. Ryu, D. J. Kim, G. B. Cho, K. W. Kim, T. H. Nam, J. H. Ahn, Journal of Power Sources. 178, 852 (2008).
    [40] T. R. Jow, L. W. Shacklette, M. Maxfield, D. Vernick, Journal of The Electrochemical Society. 134, 1730 (1987).
    [41] Q. Sun, Q. Q. Ren, H. Li, Z. W. Fu, Electrochemical Communications. 13, 1462 (2011).
    [42] L. Xiao, Y. Cao, J. Xiao, W. Wang, L. Kovarik, Z. Nie, J. Liu, Chemical Communications. (2012).
    [43] V. L. Chevrier, G. Ceder, Journal of The Electrochemical Society. 158, A1011 (2011).
    [44] C. Delmas, F. Cherkaoui, A. Nadiri, P. Hagenmuller, Materials Research Bulletin. 22, 631 (1987).
    [45] J. L. Rodrigo, P. Carrasco, J. Alamo, Materials Research Bulletin. 24, 611 (1989).
    [46] C. E. Bamberger, G. M. Begun, O. B. Cavin, Journal of Solid State Chemistry. 73, 317 (1988).
    [47] Y. Yue, W. Pang, Materials Research Bulletin. 25, 841 (1990).
    [48] H. Guler, F. Kurtulus, Materials Chemistry Physics. 99, 394 (2006).
    [49] R. Velchuri, B. V. Kumar, V. R. Devi, S. Seok II, M. Vithal, International Journal of Nanotechnology. 7, 1077 (2010).
    [50] W. Wu, A. Mohamed, J. F. Whitacre, Journal of The Electrochemical Society. 160, A497-A504 (2013).
    [51] N. Recham, J. N. Chotard, L. Dupont, K. Djellab, M. Armand, J. M. Tarascon, Journal of The Electrochemical Society. 156, A993-A999 (2009).
    [52] Y. Cao, L. Xiao, W. Wang, D. Choi, Z. Nie, J. Yu, L. V. Saraf, Z. Yang, J. Liu, Advance Materials. 23, 3155 (2011).
    [53] K. West, B. Zachau-Christiansen, T. Jacobsen, S. Skaarup, Solid State Ionics. 1128, 28–30 (1988).
    [54] K. West, B. Zachau-Christiansen, T. Jacobsen, S. Skaarup, Journal of Power Sources. 26, 341 (1989) .
    [55] S. Tepavcevic, H. Xiong, V. R. Stamenkovic, X. Zuo, M. Balasubramanian, V. B. Prakapenka, C. S. Johnson, T. Rajh, ACS Nano. 6, 530 (2011).
    [56] H. Liu, H. Zhou, L. Chen, Z. Tang, W. Yang, Journal of Power Sources. 196, 814 (2011).
    [57] H. M. Liu, H. S. Zhou, L. P. Chen, Z. F. Tang, W. S. Yang, Journal of Power Sources. 196, 814 (2011).
    [58] R. Shimanouchi-futagami, M. Nishimori, H. Nishizawa, Journal of materials science letters. 19, 405– 407 (2000).
    [59] P. Bai, W. Xing, Z. Zhang, Z. Yan, Materials Letters. 24, 3128-3131 (2005).
    [60] M. H. Youn, J. G. Seo, J. C. Jung, S. Park, D. R. Park, S. B. Lee, I. K. Song, Catalysis Today. 146, 57-62 (2009).
    [61] S. Yuvaraj, R. Kalai Selvan, V. B. Kumar, I. Perelshtein, A. Gedanken, S. Lsakkimuthu, S. Arumugam, Ultrasonics-Sonochemistry. 21, 599-605 (2014).
    [62] J. M. Kim, G. R. Yi, S. C. Lee, S. M. Lee, Y. Jo, H. W. Kang, G. Lee, H. J. Kim, Journal of Solid State Chemistry. 197, 53-59 (2013).
    [63] N. K. Nga, L. T. Giang, T. Q. Huy, P. H. Viet, Claudio Migliaresi Colloids and Surfaces B: Biointerfaces. (2013).
    [64] H. C. Dinh, S. I. Mho, Y. Kang, I. H. Yeo, Journal of Power Sources. 244, 189-195 (2013).
    [65] J. Bu, C. Nie, J. Liang, L. Sun, Z. Xie, Q. Wu, C. Lin Nanotechnology. 22, 602 (2011).
    [66] L. Shen, N. Bao, K. Yanagisawa, K. Domen, C. A. Grimes, A. Gupta, Jourmal of Physics Chemical. 111, 7280-7287 (2007).
    [67] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. J. Schlenkert, American Chemical Society. 114, 10834 (1990).
    [68] Z. Lin, J. J. Cai, L. E. Scriven, H. T. Davis, Journal of Physics Chemical. 98, 5984 (1994).
    [69] B. J. Elliott, A. B. Scranton, J. H. Cameron, C. N. Bowman, Chemical Materials. 12, 633 (2000).
    [70] C. S. Yang, D. D. Awschalom, G. D. Stucky, Chemical Materials. 13, 594 (2001).
    [71] N. Bao, L. Shen, X. Lu, K. Yanagisawa, X. Feng, Chemical Physics Letters. 377, 119 (2003).
    [72] J. Geng, J. J. Zhu, D. J. Lu, H. Y. Chen, Inorganic Chemistry. 45, 8403 (2006).
    [73] R. A. Laudise, Elsevier Science. 159 (1985).
    [74] T. Sugimoto, Advances in Colloid and interface Science. 28, 65-108 (1987).
    [75] W. Jia, E. Reitz, P. Shimpi, E. G. Rodriguez, P. X. Gao, Y. Lei, Materials Research Bulletin. 44, 1681-1686 (2009).
    [76] S. Kin, M. Kim, S.H. Hwang, S. K. Lim, Journal of Industrial and Engineering Chemistry. 18, 1141-1148 (2012)
    [77] X. Cao, Y. C. Shu, Y. N. Hu, G. P. Li, C. Liu, Transactions of Nonferrous Metals Society of China. 23, 725-730 (2012).
    [78] Y. Xu, C. Wang, S. Yang, Materials Letters. 78, 46-49 (2012).
    [79] R. I. Walton, Chemical Society Reviews. 31, 230-238 (2002).
    [80] B. Ellis, W.H. Kan, W. R. M. Makahnouk, L. F. Nazar, Journal of Materials Chemistry. 17, 3248-3254 (2007)
    [81] G. Wanka, H. Hoffmann, W. Ulbricht, Macromolecules. 27, 4140 (1994).
    [82] P. Alexandridis, J. F. Holzwarth, T. A. Hatton, Macromolecules. 27, 2414 (1994).
    [83] M. A. Augustin, Y. Hemar, Chemical Society. 38, 902-912 (2009).
    [84] X. Wu, X. Jiang, Q. Huo, Y. Zhang, Electrochimica Acta. 80, 50-55 (2012).
    [85] H. C. Dinh, S. I. Mho I. H. Yeo, Electroanalysis. 23, 2079-2086 (2011).
    [86] H. C. Dinh, H. Lim, K. D. Park, I. H. Yeo, Y. Kang, S. I. Mho, Nanoscience And Nanotechnology. 4, 015011-015015 (2013).
    [87] C. M. Burba, R. Frech, Solid State Ionics. 177, 1489–1494 (2006).
    [88] V. S. Kurazhkovskaya, D. M. Bykov, E. Y. Borovikova, N. Y. Boldyrev, L. Ikhalistsyn, A. I. Orlova, Vibrational Spectroscopy. 52 137–143 (2010).
    [89] R. Pikl, D. de Waal, A. Aatiq, A. El Jazouli, Vibrational. Spectroscopy. 137–143 (1998).
    [90] V. Aravindan, W. Chuiling, A. Madhavi, RSC Advances. 2, 7534-7539 (2012)
    [91] J. Hodkiewicz, Thermo Fisher Scientific. Madison, WI, USA
    [92] B. T. Liu, C. H. Hsu, W. H. Wang, Journal of the Taiwan Institute of Chemical Engineers. 43, 147-152 (2012).
    [93] V. Aravindan, W. Chuiling, M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdrai, S. Madhavi, Physical Chemistry Chemical Physics. 14, 5808-5814 (2012).
    [94] M. S. Dresselhaus, A. Jorio, A. G. Souza Filho, R. Saito, Philosophical Transactions of The Royal Society. 368, 5355-5377 (2010).
    [95] J. Y. Luo, Y. Y. Xia, Advanced Functional Materials. 17, 3877-3884 (2007).
    [96] B. Pei, H. Yao, W. Zhang, Z. Yang, Journal of Power Sources. 220, 317 (2012).
    [97] X. Lou, Y. Zhang, Journal of Materials Chemistry. 21, 4156 (2011).
    [98] M. Y. Cho, S. M. Park, B. H. Choi, J. W. Lee, K. C. Roh, Journal of Ceramic Processing Research. 13, 166-169 (2012).
    [99] C. Wang, G. Shao, Z. Ma, S. Liu, W. Song, J. Song, Electrochimica Acta. 130, 679-688 (2014).
    [100] Y. Liu, Y. Qiao, W. Zhang, H. Xu, Z. Li, Y. Shen, L. Yuan, X. Hu, X. Dai, Y. Huang, Nano Energy. 5, 97-104 (2014).
    [101] Z. Jian, L. Zhao, R. Wang, Y. S. Hu, H. Li, W. Chen, L. Chen, RSC Advances. 2, 1751-1754 (2012).
    [102] J. Y. Luo, W. J. Cui, P. He, Y. Y. Xia, Nature Chemistry. 2, 760 (2010).
    [103] W. Li, J. R. Dahn, D. S. Wainwright, Science. 264, 1115 (1994).
    [104] W. Li, J. R. Dahn, Journal of The Electrochemical Society. 142, 1742 (1995).
    [105] M. Zhang, J. R. Dahn, Journal of The Electrochemical Society. 143, 2730 (1996).
    [106] S. M. Oh, S. W. Oh, C. S. Yoon, B. Scrosati, K. Amine, Y. K. Sun, Advanced Functional Materials. 20, 3260 (2010).
    [107] K. Wu, X. Lin, L. Shao, M. Shui, N. Long, Y. Ren, J. Shu, Journal of Power Sources. 259, 177-182 (2014).
    [108] Y. Lu, S. Zhang, Y. Li, L. Xue, G. Xu, X. Zhang, Journal of Power Sources. 247, 770-777 (2014).

    QR CODE
    :::