| 研究生: |
林士勛 Shih-hsun Lin |
|---|---|
| 論文名稱: |
含氟烷基取代之萘雙亞醯胺與苝雙亞醯胺在有機場效電晶體之應用 Fluorinated Derivatives of Perylene and Naphthalene Diimidesfor n-Channel Organic Field-Effect Transistors |
| 指導教授: |
陳錦地
Chin-Ti Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 221 |
| 中文關鍵詞: | 有機場效電晶體 |
| 外文關鍵詞: | Organic Field-Effect Transistors, n-Channel |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用3,4,9,10-perylenetetracarboxylic dianhydride(PTCDA)和1,4,5,8-naphthalenetetracarboxylic dianhydride(NTCDA)作為負型有機半導體材料主體結構。因負型有機半導體在空氣下傳導電子具不安定性,因此導入多氟烷氨基將酐類轉化成醯胺類(PTCDI和NTCDI)使其化合物在空氣中更加穩定,藉由改變多氟烷基的碳鏈長度探討其含氟多寡與距離對化合物在空氣下的相對穩定性的關係,並且將我們所合成的有機材料製成有機場效電晶體,量測到最佳載子移動率為0.02 cm2/Vs,並分析其電性結果關係。
In this study. We use 3,4,9,10-perylenetetracarboxylic dianhydride(PTCDA) and 1,4,5,8-naphthalenetetracarboxylic dianhydride(NTCDA) as our main structure. Due to n-type semiconductors are not stable in the air, we introduce the perfluoro-alkyl chains into our structure (PTCDI and NTCDI), anticipating that these organic semiconductors are more stable in the air. Here we prepare a series of n-type organic semiconductors based on perylene diimide and naphthalene diimide with different perfluoro-alkyl chains, conferring the numbers of fluorine and the distance from the core. Finally, we systematically investigated the effect of chemical structural variation on molecular level, electron mobility, and transistor stability.
參 考 文 獻
1. http://www.sony.jp/products/Consumer/oel/products/index.html
http://www.udn.com/2007/5/27/NEWS/INFOTECH/INF2/3861791.shtml http://www.engadget.com/2005/07/13/fujitsus-flexible-low-power-color-screen/
2. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Soc. 1977, 578.
3. A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210.
4. J. H. Burroughes, C. A. Jones, R. H. Friend, Nature 1988, 335, 137.
5. Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett. 1996, 69, 4108.
6. D. M. Leeuw, Nature 2000, 407, 422.
7. D. M. Leeuw, Nature 2001, 414, 599.
8. M. McCreary, Nature 2003, 423, 136.
9. Z. Bao, Materials Today 2004, 20, 20.
10. A. Facchetti, Materials Today 2007, 10, 28.
11. J. Zaumseil, H. Sirringhaus, Chem. Rev. 2007, 107,1296.
12. H. Inokuchi, Bull. Chem. Soc. Jpn. 1954, 27, 22.
13. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J.
Heeger, J. Chem. Soc. 1977, 21, 578.
14. A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210.
15. F. Ganrnier, Synth. Met. 1992, 51, 419.
16. R. Haddon, A. Perel, A. Hebard, J. Appl. Phys. 1995, 67, 121.
17. Y. Lin, D.Gundlach, T. Jackson, Ann. Rev. Conf. Digest. 1996, 80.
18. J. H. Schön, C. Kloc, B. Batlogg, Org. Electron. 2000, 1, 57.
19. F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Dellofre, P.
Alnot, J. Am. Chem. Soc. 1993, 115, 8716.
20. H. Katz, A. Loringer, J. Laquindanum, Chem. Mater. 1998, 10, 457.
21. Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett. 1996, 69,
4108.
22. H. Sirringhaus, N. Tessler, R. H. Friend, Science 1998, 280, 1741
23. Y. Ohmori, H. Takahashi, K. Muro, M. Uchida, T. Kawai, K.
Yoshino, Jpn. J. Appl. Phys. 1991, 30, 610.
24. D. D. Eley, Nature 1948, 162, 819.
25. D. F. Barbe, C. R. Westgate, J. Phys. Chem. Solids. 1970, 31, 2679.
26. H. Katz, Z. Bao, S. Gilat, Adv. Mater. 2002, 14, 99.
27. H. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siogrist, A.
Dodabalapur, Nature 2000, 404, 478.
28. G. Guillaud, M. Sadound, M. Maitorot, Chem. Phys. Lett. 1990, 167,
503.
29. A. R. Brown, D. M. Leeuw, E. J. Louis, E. E. Havinga, Synth. Met.
1994, 66, 257.
30. R. C. Haddon, A. S. Perel, R. C. Morris, T. T. Palsta, A. F. Hebard,
R. M. Fleming, J. Appl. Phys. 1995, 67, 121.
31. Z. Bao, A. J. Lovinger, J. Brown, J. Am. Chem. Soc. 1998, 120, 207.
32. A. Facchetti, Y. Deng, A. Wang, Y. Koide, H. Sirringhaus, T. J.
Marks, R. H. Friend, Angew. Chem. Int. Ed. 2000, 39, 4547.
33. T. M. Pappenfus, R. J. Chesterfield, C. D. Frisbie, K. R. Mann, L. L.
Miller, J. Am. Chem. Soc. 2002, 124, 4184.
34. J. G. Laquindanum, H. Katz, A. Dodabalapur, A. J. Lovinger, J.
Am. Chem. Soc. 1996, 118, 11331.
35. H. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siogrist, A.
Dodabalapur, Nature 2000, 404, 478.
36. R. L. Patrick, D. Christos, D. Jeffrey, L. L. Gelorme, O. Teresita,
Appl. Phys. Lett. 2002, 80, 2517.
37. B. A. Jones, M. J. Ahren, M. H. Yoon, A. Facchetti, T. J. Marks, M.
Wasielewski, Angew Chem. Int. Ed. 2004, 43, 6363.
38. H. Katz, J. Jerainne, J. Andrew, L. Wenjie, J. Am. Chem. Soc. 2000,
122, 7787.
39. Y. Sakamoto, S. Komatsu, T. Suzuki, J. Am. Chem. Soc. 2001, 123,
4643.
40. Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue,
F. Sato, S. Tokito, J. Am. Chem. Soc. 2004, 126, 8138.
41. M. M. Ling, X. Mo, M. M. Shi, M. Wang, Z. Bao, Chem. Mater.
2007, 19, 816.
42. B. A. Jones, A. Facchetti, T. J. Marks, M. R. Wasielewski, Chem.
Mater. 2007, 19, 2703.
43. M. M. Ling, P. Erk, M. Gomez, M. Koenemann, J. Locklin, Z. Bao,
Adv. Mater. 2007, 19, 1123.
44. B. A. Jones, A. Facchetti, M. R. Wasielewski, T. J. Marks, J. Am.
Chem. Soc. 2007, 129, 15259.
45. J. Nishida, N. S. Murai, E. Fujiwara, H. Tada, M. Tomura, Y.
Yamashita, Org. Lett. 2004, 6, 2007.
46. V. D. George, H. A. Brown, T. S. Reid, J. Am. Chem. Soc. 1953, 75, 5978.