跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉鈺均
Yu-Jyun Liou
論文名稱: 發展GCE暖雨雙矩量微物理參數化方案:理想及真實個案測試
指導教授: 鍾高陞
Kao-Shen Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 大氣科學學系
Department of Atmospheric Sciences
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 105
中文關鍵詞: 雲微物理參數化雙矩量方案定量降水預報
外文關鍵詞: Microphysics, Parameterization, Double-moment scheme, Quantitative Precipitation Forecast
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目標在於將目前台灣地區常用於模擬及預報之 Goddard Cumulus
    Ensemble(GCE)微物理參數化方案,從原先的單矩量形式,轉變為自由度更高,且提供更多水物粒子相關資訊之雙矩量形式。此次更新完之微物理參數化方案共預報七種不同水物粒子(水氣、雲水、雨水、雲冰、雪、軟雹與冰雹),以及兩種暖雨過程之總水物粒子濃度(雲水與雨水)。為了檢視雙矩量之 GCE 微物理參數化方案(GCEDM)在模式中的降雨預報表現,故使用 1) 2D Thunderstorm 理想化實驗、2) 3D Supercel 理想化實驗
    以及 3) 暖雨過程主導之台灣降水真實個案,並主要以後兩者來與不同之微物理參數化方案進行評估與比較。
    2D Thunderstorm 理想化實驗初步顯示了 GCESM 與 GCEDM 在降水能力與分布的相似與差異之處。而在 3D Supercel 理想化實驗中,GCEDM 所得到之累積降雨量相較於單矩量之 GCE 微物理參數化方案(GCESM)有所減少,但在動力、熱力及降雨率等特徵兩者依然相似。此外,當增加了總水物粒子濃度的計算後,GCEDM 在對流系統與層狀系統中,能夠像其他雙矩量微物理方案一樣,呈現出更多樣化的雨滴粒徑分布,使其更接近真實情形。另一方面,在真實個案之定量降水預報上,GCEDM 整體表現出了比 GCESM 更好的降雨預報能力,特別是在強降雨區域發生暖雨過程主導之降水時有明顯改善。原因在於透過增加雨水粒子濃度預報,微物理過程中作為主要雨水生成作用之雲雨水聚集作用有所減弱,大幅減緩了原先 GCESM 中過報的累積降雨情形。在動力方面,GCEDM 之低層輻合作用較 GCESM 有所減弱,底層水氣難以透過上升運動到達高層,故高層飽和度較低,水物粒子轉化上也相較困難,導致降雨量上的大幅減少。此預報結果顯示出 GCEDM 不只能在實際個案中提供更詳盡的水物粒子資訊,甚至可以提供相比 GCESM 更好的預報效益。


    This study aims to modify Goddard Cumulus Ensemble microphysics (GCE) scheme,which is the widely used microphysics scheme for simulations and forecasts around the world, from single-moment to double-moment scheme. The upgraded scheme predicts the mixingratios of seven species hydrometeors (water vapor, cloud water, rain water, cloud ice, snow,graupel and hail), and total number concentrations of hydrometeors in warm-rain processes(cloud water and rain water). To examine the performance of GCE double-moment, it was evaluated and compared to different microphysics schemes by: 1) an idealized 2D thunderstorm, 2) an idealized 3D supercell storm tests and 3) a warm-rain processes dominant real case over Taiwan.
    Similarities and differences of precipitation between GCESM and GCEDM examine by 2D idealized thunderstorm test. For the 3D supercell idealized test, the result of accumulated rainfall is less in GCE double-moment compared to GCE single-moment, but the features of the dynamic, thermodynamic, and rainfall rate are similar as GCE single-moment scheme. In addition, when calculating the total number concentration, GCE double-moment scheme shows the capability to present more diversity of rain droplet sizes in both convective and stratiform regions toward reality, and this is similar as other double-moment schemes. On the other hand, the performance of quantitative precipitation forecast showed that, the GCE double-moment scheme is had better forecast skill compared to the GCE single-moment, especially for the warm-rain processes dominant situation in heavy rainfall region. By appending rain number concentration forecast, accretion of cloud and rain as main rainwater source microphysics process becomes weaker. It leads to reduce overestimate of accumulated rainfall obviously. For dynamic, low level convergence in GCEDM is weaker than GCESM. Low level water vapor is hard to arrive high level by updraft. Therefore, lower saturation and more difficult to transform into hydrometeors. Finally, it makes precipitation decrease dramatically. In summary, GCEDM
    not only provides more detail hydrometeor particle information, but also can get better benefit of forecast.

    摘要 ............................................................... ..... i Abstract ........................................................... .... ii 致謝 ............................................................... .... iii 目錄 ............................................................... .... iv 圖表目錄 ........................................................... ..... v 一、緒論 ........................................................... ..... 1 1.1 前言與文獻回顧 .............................................................................................................1 1.2 研究動機 .........................................................................................................................4 二、雲微物理參數化方案介紹 ......................................... ..... 6 2.1 Goddard Cumulus Ensemble 4ICE single-moment scheme (GCESM scheme) ..............6 2.2 Goddard Cumulus Ensemble 4ICE double-moment scheme (GCEDM scheme) ............7 2.3 WRF Double-Moment 7-category (WDM7) scheme .....................................................10 三、模式架構與實驗設計 ............................................. .... 11 3.1 Weather Research and Forecasting(WRF) Model 簡介.................................................11 3.2 實驗設計 .......................................................................................................................11 3.3 實際個案降雨與雷達回波檢驗方式 ............................................................................13 四、模擬結果比較 ................................................... .... 17 4.1 2D Thunderstorm 理想化實驗(2D idealized thunderstorm test)................................17 4.2 3D Supercell 理想化實驗(3D idealized supercell storm test) ....................................17 4.3 真實個案(Real case)......................................................................................................23 五、結論與未來展望 ................................................. .... 32 六、參考文獻 ....................................................... .... 35 附表 ............................................................... .... 43 附圖 ............................................................... .... 52

    陳如瑜、張偉裕、陳台琦,2017:北台灣 S 與 C 波段雙偏極化雷達定量降雨估計之比較,大氣科學,45(1),57-80。
    游承融,2019:利用雙偏極化雷達觀測資料進行極短期天氣預報評估─2008 年西南氣流實驗 IOP8 期間颮線系統個案,碩士論文,國立中央大學大氣物理研究所,105 頁。
    邱顯榮,2020:利用多頻道衛星觀測評估 WRF 數值模式於不同微物理方案之雲特性:以梅雨鋒面降水系統個案為例。碩士論文,國立中央大學大氣物理研究所, 1-73頁。
    Arakawa, A. 1975: Modelling clouds and cloud processes for use in climate models. WMO The Phys. Basis of Climate and Climate Modelling, 183-197
    Bae, S.Y.; Hong, S.-Y.; Tao, W.-K. 2019: Development of a Single-Moment Cloud Microphysics Scheme With Prognostic Hail for the Weather Research and Forecasting (WRF) Model. Asia-Pac. J. Atmos. Sci., 55, 233–245.
    Cao, Q., Zhang, G., Brandes, E., Schuur, T., Ryzhkov, A., Ikeda, K., 2008. Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma.J. Appl. Meteorol. Climatol. 47, 2238–2255.
    Chakraborty, T., Pattnaik, S., Jenamani, R., & Baisya, H. 2021: Evaluating the performances of cloud microphysical parameterizations in WRF for the heavy rainfall event of Kerala.Meteorology and Atmospheric Physics, 133, 707–737.
    Chen, J.-P., and S.-T. Liu, 2004: Physically-based two-moment bulk-water parameterization for warm cloud microphysics. Q. J. Royal Meteor. Soc., 130, Part A, 51–78.
    Choudhury, D. and Das, S., 2017: The sensitivity to the microphysical schemes on the skill of forecasting the track and intensity of tropical cyclones using WRF-ARW model, J. Earth Syst. Sci., 126, 1–10.
    Cohard, J.-M., and J.-P. Pinty., 2000a: A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Quart. J. Roy. Meteor. Soc., 126, 1815–1842.
    Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077–3107.
    Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I:Description. J. Atmos. Sci., 51, 249–280.
    Fovell, R., Y. P. Bu, K. L, Corbosiero, W. Tung, Y. Cao, H.-C. Kuo, L. Hsu, and H. Su, 2016:Influence of cloud microphysics and radiation on tropical cyclone structure and motion.
    Multiscale Convection-Coupled Systems in the Tropics: A Tribute to Dr. Michio Yanai,Meteor. Monogr., No. 56., Amer. Meteor. Soc, 11.1–11.27
    Grell, G. A. and Dévényi, D, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques, Geophys, Res, Lett„ 29, 38-31–
    38-38.
    Grubišić, V., R. Vellore, and A. Huggins, 2005: Quantitative precipitation forecasting of wintertime storms in the Sierra Nevada: Sensitivity to the microphysical parameterization and horizontal resolution. Mon.Wea. Rev., 133, 2834–2859
    García-Ortega, E., J. Lorenzana, A. Merino, S. Fernández-González, L. López, and J. L.Sánchez, 2017: Performance of multi-physics ensembles in convective precipitation
    events over northeastern Spain. Atmos. Res., 190, 55–67.
    Hong, S.-Y., J. Dudhia, S.-H. Chen, 2004: A revised approach to ice-microphysical processes for the bulk parameterization of cloud and precipitation., Mon. Wea. Rev., 132, 103-120.
    ——, and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc.,42, 129–151.
    ——, J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.
    ——, Noh, Y., and Dudhia, J.,2006: A new vertical diffusion package with an explicit treatment of entrainment processes, Mon. Weather Rev., 134, 2318–2341.
    ——, and K.-S. S. Lim, 2009: The WRF double-moment cloud microphysics scheme (WDM). Proc. The Third East Asia WRF Workshop and Tutorial, Seoul, South Korea,Joint Center for High-Impact Weather and Climate Research, 14.
    Jang, S., Lim, K.S., Ko, J., Kim, K., Lee, G.W., Cho, S.-J., Ahn, K.-D., Lee, Y.-H., 2021. Revision of WDM7 microphysics scheme and evaluation precipitating convection over
    the Korean peninsula. Rem. Sens. 13, 3860.
    Johnson, M., Y. Jung, D. Dawson, and M. Xue, 2016: Comparison of simulated polarimetric signatures in idealized supercell storms using two-moment bulk microphysics schemes in WRF. Mon. Wea. Rev., 144, 971–996
    Jung, Y., M. Xue, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor.
    Climatol., 49, 146–163.
    Kang, I.S., Yang, Y.M. and Tao, W.K. 2015: GCMs with implicit and explicit representation of cloud microphysics for simulation of extreme precipitation frequency. Climate
    Dynamics, 45(1–2), 325–335
    Kessler, E. 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Monogr., No.32, Amer. Meteor. Soc., 84 pp.
    Kumjian, M. R., & Prat, O. P. 2014: The impact of raindrop collisional processes on the polarimetric radar variables. Journal of the Atmospheric Sciences, 71(8), 3052–3067.
    Kumjian, M.R.; Prat, O.P.; Reimel, K.J.; van Lier-Walqui, M.; Morrison, H.C. 2022:DualPolarization Radar Fingerprints of Precipitation Physics: A Review. Remote Sens., 14,
    3706.
    Lang, S., W.-K. Tao, R. Cifelli, W. Olson, J. Halverson, S. Rutledge, and J. Simpson, 2007: Improving simulations of convective system from TRMM LBA: Easterly and westerly
    regimes, J. Atmos. Sci.,64, 1141–1164.
    ——, W.-K. Tao, X. Zeng, and Y. Li, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems,J. Atmos. Sci.,68, 2306–2320.
    ——, W.-K. Tao, J.-D. Chern, D. Wu, and X. Li , 2014: Benefits of a 4th ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme, J.Atmos. Sci.,71, 3583–3612.
    Lim, J.-O. J., and S.-Y. Hong, 2005: Effects of bulk ice microphysics on the simulated monsoonal precipitation over east Asia, J. Geophys. Res., 110(D24), 06 166-06 181.
    Lim, K.-S. S., and S.-Y., Hong, 2011: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138(5), 1587–1612.
    Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092
    Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J.Meteor., 5, 165–166.
    McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991: Comparison of icephase microphysical parameterization schemes using numerical simulations of
    convection. J. Appl. Meteor., 30, 985-1004.
    Meyers, M. P., R. L. Walko, J. Y. Harrington, and W. R. Cotton, 1997: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 3–39.
    Milbrandt, J. A., and M. K. Yau, 2005a: A multi-moment bulk microphysics parameterization.Part I: Analysis of the role of the spectral shape parameter.J. Atmos. Sci., 62, 3051–3064
    Milbrandt, J.A., Morrison, H. 2013: Prediction of graupel density in an bulk microphysics scheme. J. Atmos. Sci. 70,410–429
    ——, Morrison, H., Dawson, D. T., II, & Paukert, M. 2021: A triple‐moment representation of ice in the Predicted Particle Properties(P3) microphysics scheme. Journal of the
    Atmospheric Sciences, 78(2), 439–458.
    Min, K., S. Choo, D. Lee, and G. Lee. 2015: Evaluation of WRF Cloud Microphysics Schemes Using Radar Observations. Wea. Forecasting, 30, 1571–1589,Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A. 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res.-Atmos., 102, 16663– 16682.
    Morrison, H., G. Thompson, and V. Tatarskii. 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev.,137, 991–1007
    ——, and J. Milbrandt. 2011: Comparison of two-moment bulk microphysics schemes in idealized supercell thunderstorm simulations. Mon. Wea. Rev., 139, 1103–1130,.
    ——, and J. A. Milbrandt. 2015: Parameterization of ice microphysics based on the prediction of bulk particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci.,72, 287–311,
    ——, J. A. Milbrandt, G. Bryan, K. Ikeda, S. A. Tessendorf, and G. Thompson. 2015:Parameterization of cloud microphysics based on the prediction of bulk ice particle
    properties. PartII: Case study comparisons with observations and other schemes.J.Atmos.Sci., 72, 312–339,
    Park J, Cha D, Lee M K, Moon J, Hahm S, Noh K, Chan J C L and Bell M 2020 Impact of cloud microphysics schemes on tropical cyclone forecast over the western North Pacific
    J. Geophys. Res. Atmos. 125
    Putnam, B.J., M. Xue, Y. Jung, N. Snook, and G. Zhang. 2014: The Analysis and Prediction of Microphysical States and Polarimetric Radar Variables in a Mesoscale Convective System Using Double-Moment Microphysics, Multinetwork Radar Data, and the Ensemble Kalman Filter. Mon. Wea. Rev., 142, 141–162.
    Reshmi Mohan, P., Venkata Srinivas, C., Yesubabu, V., Baskaran, R., Venkatraman, B., 2019:Tropical cyclone simulations over Bay of Bengal with ARW model: sensitivity to cloud microphysics schemes. Atmos. Res. 230, 104651.
    Roberts, N., Lean H. 2008: Scale‐selective verification of rainfall accumulations from high‐resolution forecasts of convective events. Mon. Weather Rev. 136: 78– 97.
    Robber P.-J. 2009: Notes and Correspondence - Visualizing Multiple Measures of Forecast Quality. Wea. Forecasting, 24, 601-608.
    Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in mid-latitude cyclones. Part VIII: A model for the ‘‘seeder feeder’’ process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206.
    ——, and ——. 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of
    precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972,
    Salzmann, M., Y. Ming, J.-C. Golaz, P. A. Ginoux, H. Morrison, A. Gettelman, M. Krämer,and L. J. Donner. 2010: Two-moment bulk stratiform cloud microphysics in the GFDL
    AM3 GCM: Description, evaluation, and sensitivity tests. Atmos. Chem. Phys., 10,8037–8064.
    Song X, Zhang GJ, and Li JL. 2012: Evaluation of Microphysics Parameterization for Convective Clouds in the NCAR Community Atmosphere Model CAM5. J Climate,25(24):8568–90.
    Steiner, M., R. A. Houze, Jr., and S. E. Yuter. 1995: Climatological Characterization of ThreeDimensional Storm Structure from Operational Radar and Rain Gauge Data. J. Appl.Meteor., 34, 1978-2007.
    Tao, J. Simpson and M. McCumber, 1989: An ice-water saturation adjustment. Mort. Wea.Rev.,117, 231-235.
    ——, W.-K., and J. Simpson, 1993: The Goddard Cumulus Ensemble Model. Part I:Model description. Terr. Atmos. Ocean.Sci., 4, 19–54.
    ——, and Coauthors, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys., 82, 97–137
    ——, and M. Moncrieff, 2009: Multi-scale cloud-system modeling. Rev. Geophys., 47,RG4002
    ——, Chen, J.-P., Li, Z.-Q., Wang, C., and Zhang, C.-D., 2012: The impact of aerosol on convective cloud and precipitation. Rev. Geophys. 50, RG2001.
    ——, and Coauthors, 2014: The Goddard Cumulus Ensemble model (GCE): Improvements and applications for studying precipitation processes. Atmos. Res., 143, 392–424
    ——, Wu, D., Lang, S., Chern, J. D., Peters-Lidard, C., Fridlind, A., & Matsui, T. 2016. High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. Journal of eophysical Research: Atmospheres, 121(3), 1278–1305
    Tiedtke, M., 1984: The effect of penetrative cumulus convection on the largescale flow in a general circulation model. Beitr. Phys. Atmos. 57, 216–239.
    Twomey, S., 1959a: The nuclei of natural cloud formation, Part I: The chemical diffusion method and its application to atmospheric nuclei. Pure Appl.Geophys., 43, 227–242.
    —— 1959b: The nuclei of natural cloud formation, Part II: The supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl.Geophys., 43, 243–249
    Ulbrich, C. W., 1983: Natural variations in the analytical form of the raindrop size distributions. J. Appl. Meteor. Climatol., 22, 1764–1775
    Weisman, M. L., and J. B. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110,504–520.
    ——, and ——, 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112,2479–2498.
    Yang, J. and Yau, M.: A new triple-moment blowing snow model, Bound.-Lay. Meteorol., 126,137–155.
    Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus.Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123,1941–1963
    Zeng, X., Tao, W.-K., Lang, S., Hou, A.Y., Zhang, M., Simpson, J., 2008: Onthe sensitivity of atmospheric ensembles to cloud microphysics in longterm cloud-resolving model simulations. J. Meteorol. Soc. Jpn., 86A, 45–65
    Zhang, Y., Fan, J., Li, Z., and Rosenfeld, D, 2021: Impacts of cloud microphysics parameterizations on simulated aerosol–cloud interactions for deep convective clouds
    over Houston, Atmos. Chem. Phys., 21, 2363–2381.

    QR CODE
    :::