跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇文祥
Wen-Hsiang Su
論文名稱: 結合奈米脂粒與抗體微陣列晶片的高通量快速檢測系統之發展並應用於婦女子宮頸炎病因之診斷與研究
A chip-based multiplexed immunoassay system using liposomal nanovesicles and its application on the detection of pathogens causing female cervicovaginitis
指導教授: 陳健生
Chien-Sheng Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 生醫理工學院 - 系統生物與生物資訊研究所
Graduate Institute of Systems Biology and Bioinformatics
畢業學年度: 100
語文別: 英文
論文頁數: 99
中文關鍵詞: 奈米脂粒陰道子宮頸炎微晶片脂肪小體快速診斷
外文關鍵詞: cervicovaginitis, rapid diagnosis, microchip, liposome, nanovesicle
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 (Chinese Abstract)
    研究目的:在婦產門診業務中,最常遇到的疾病就是女性的子宮頸炎或者陰道炎,尤其是在接受常規抹片檢查逐漸被婦女同胞認同而逐漸普遍的今天,抹片報告「發炎」一直是困擾著病患也困擾著醫師的一大難題,如果有更快速而且有效率的檢驗方法,可以告訴我們到底發炎是由哪些致病體所引貣的?這個發炎會不會發展成為癌症?是否需要積極的治療以預防更嚴重的感染,如子宮炎、輸卵管炎、骨盆腔炎、甚至卵巢膿瘍,一些嚴重的影響婦女健康的炎症?我們將利用本實驗室在高通量生物感測的專長,在抗體微陣列晶片上建立奈米脂粒的病原體抗體反應訊號放大與偵測系統。該系統建立之後,我們將利用各病原體菌株來進行該偵測系統的效度測試。等達到一定的敏感度和特異性之後,接著將申請臨床試驗,蒐集參與者陰道分泌物檢體 (只頇數十個 microliter)進行分組測試,以確定本系統偵測與鑑別診斷的能力。針對這樣的疾病和工具,我們集合系統生物與生物資訊研究所的微晶片實驗室提出了、台北榮民總醫院的資源配合中央大學統計研究所的專長,在民國一百年度申請到了榮總台灣聯合大學合作研究整合型計畫,雖然對於我們想要用數學模式模擬正常與有症狀的陰道微生物菌落組成,仍有待努力蒐集更多的實驗室和臨床數據,我們依然順利的完成了該計畫,並且發表了兩篇論文並且完成第三篇論文投稿。
    資料來源與研究方法:經過文獻查閱與網路搜尋,並且配合本身條件與有限經費,我們在多種引貣陰道子宮頸炎的主要病原菌中選擇了五種作為標的,包括披衣菌、淋病雙球菌、大腸桿菌、乙型鏈球菌和白色念珠菌的抗體被買來點在玻片上。一個奈米微脂粒訊號放大與偵測系統被建立貣來並且設計實驗來驗證該系統的正常運作。然後在實驗室裡以抗原與病原菌測試該系統確實可以偵測到晶片上的抗體抗原反應。另外最後經由婦產科門診收集病患的陰道與子宮頸分泌物進行病原菌的檢測並且以加回的方法驗證本系統的確可以偵測到檢體中的白色念珠球菌。在將來我們將使用數學比例勝算模組來做運算基礎,嘗試鑑別嚴重陰道炎的微生物組成。結果是否有意義將經由配對t 試驗來檢驗,p<0.05 為有意義。
    研究結果:在整個文獻查詢和臨床應用可能性的查證之中,我們針對淋病感染的診斷工具做了一番回顧,在比較過優缺點和是否能在門診及時應用的可能性後,提出了最好的方法還在建構中的結論。本系統也被初步證實可以在實驗室中可偵測微克級披衣菌抗原,並且呈現濃度與訊號強度有正相關,針對與以往診斷披衣菌感染的診斷工具的不同處和本系統在敏感度提升的可能性,我們又做了一番整理與發表。最後對於其他病原菌,這個系統在實驗室檢體中的偵測能力被證實,p 值小於0.01。特別在白色念珠菌的偵測敏感度高達每毫升十萬菌落數的水準,而在臨床檢體中,本系統對於加回該菌的敏感度與專一性也都接近百分之百。而且一般處理時間大概只需要兩百分鐘,而所需要的偵測工具只是一般的實驗室器材和一台螢光數據讀取儀器。
    結論:,本偵測系統提供了相對經濟、簡單、高通量、快速、靈敏、奈米級的多重病原體偵測工具,至少對白色念珠菌而言是如此。這個領域的進步,終將可以幫助臨床醫護人員快速、經濟而準確的鑑別診斷在陰道中可能引貣子宮頸炎的不同菌種。


    English Abstract
    Backgrounds: Cervicovaginitis is a common infection in women. Ignorance of this disease may place a heavy burden on female and neonatal health due to occurrence of severe sequelae such as female infertility, ectopic pregnancy, chronic pelvic pain, and neonatal infections. Prompt and appropriate antibiotic treatment can cure infection and avoid complications. However, adequate treatment is not easy, since many factors can interfere with an early and rapid identification of various pathogens from complicated mixed micro-flora of the vagina and cervix. Among these factors, a non-user-friendly rapid detection system seems the most important. A microarray immunoassay chip was fabricated for binding of pathogens causing cervicovaginitis and a signal amplifying system using liposomal nanovesicles was used for detection. Laboratory and clinical samples were tested with some promising results. We collected the source from Veteran General Hospital in Taipei and Hit Laboratory in the department of Systems Biology and Bio-informatics. With expert help from Statistic school of National Central University, our project was accepted and granted by the aiwan Joint Research Program (VGHUST99-G4-3) from Jan. 1st to Dec. 31st, 2010. Although the attempt to simulate a normal and symptomatic micro-flora in the vagina by mathematic model demanded more work from laboratory and clinic setting. We still finished the project with limited resources and published two SCI manuscripts and submitted our third one.
    Material and methods: After literature review and data mining on the internet, five pathogens were chosen based on our limited culture ability and financial support. Well established capture antibodies for specific pathogens causing cervicovaginitis, including Streptococcus B, Chlamydia trachomatis , Neisseria gonorrhoeae , Escherichia coli, and anti Candida albicans were purchased to be printed on a Chip. Signal amplifying system using liposomal nanovesicles was established and validated. Various pathogens and antigens were collected for validation of this detecting system on chips. Cervical and vaginal samples were obtained from an ordinary gynecologic clinic for pathogens detection. Spiking of candida in the samples were used to testify the usefulness of this detection system. We will use the proportional odds models to make inferences regarding which pathogen tends to induce more severe infection if more positive data available. The difference between positive and negative readings was evaluated by paired t test.
    Results: During our literature review and data mining for the application of our tool in the diagnosis of specific infections, we focused on the gonococcal infection first. After comparison with other tools, we argued the best method for the diagnosis of gonorrhea infection is still under construction especially regarding the qualities as a Point-of-Care tool. Furthermore, our system was proved to be sensitive in detecting Chlamydia antigen to a level of micro-gram. A positive proportion relationship between antigen concentrations and signal intensity was also demonstrated. Another review about the possibility of our system and comparison with other tools for diagnosis of Chlamydia infection was completed and published. As for other pathogens, the power of this system was validated (p<0.01). The detection sensitivity of candida of this system reach the level of 100,000 CFU/ml in a vaginal sample. In the study of clinical samples, the sensitivity and specificity of this tool in the candida spike test reach near 100% sensitivity and specificity. Moreover, the average processing time is around 200 minutes and the required apparatus is ordinary laboratory equipments with a fluorescent reading machine.
    Conclusions: Microarray chip is a relatively rapid, easy, inexpensive and sensitive tool to detect many pathogens, at least for Candida, in a one-time vaginal sampling process in our Laboratory. Eventually, advances in related laboratory techniques will satisfy our needs to detect pathogens in vaginal and cervical samples economically and instantly.

    Table of Contents 中文摘要 (Chinese Abstract) i English Abstract iii Acknowledgement v Table of Contents vii List of figures x List of Tables xi Main text of thesis 1 Part one: The joint project 2 計畫大綱Summary of the project: 2 子計畫(一) 4 (一)、中英文摘要 4 (二)、研究計畫之背景及目的 5 (三)、研究方法、進行步驟及執行進度 7 (四)、預期完成之工作項目及成果 8 子計畫(二) 10 (一)、中英文摘要 10 (二)、研究計畫之背景及目的 12 (三)、研究方法、進行步驟及執行進度 14 (四)、預期完成之工作項目及成果 15 子計畫(三) 17 (一)、中英文摘要 17 (二)、研究計畫之背景及目的 17 (三)、研究方法、進行步驟及執行進度 18 (四)、預期完成之工作項目及成果 19 結論 20 Part two: The Review of diagnostic tools for gonorrhea infection 21 Abstract 21 Introduction 22 Tool 1: Syndromic approach 23 Tool 2: Gram’s stain 23 Tool 3: Culture 24 Tool 4: Immunoassay 24 Tool 5: Nucleic Acid Amplification Tests (NAATs) 25 Tool 6: Prospect method 26 Part three: Chlamydia infection 30 Abstract 30 Introduction 31 Material and Methods 32 Modification of detection antibody (Biotinylation of Chlamydia antibody) 33 Validation of biotinylation 33 Results 35 Discussion 36 Part four: Other pathogens and clinical trial 41 Abstract 41 Introduction 42 Material and Methods 44 I. Signal amplifying liposomal nanovesicle system 44 II. Fabrication of antibody Chips and Chips assay 47 III. Validation of liposomal amplifying system on chips 48 IV. Validation of antibody-antigen reaction on chips 48 V. Chip assay for clinical samples 49 VI. Reading of the chips 49 VII. Data Analysis 49 Results 50 I. Validation of the liposomal amplifying system 50 II. Validation of antigen-antibody reaction on chips 52 III. Detection of pathogens in vaginal samples 54 Discussion 55 Conclusion 58 Bibliography 59 Appendix 65

    Bibliography
    1. Pellati, D., et al., Genital tract infections and infertility. Eur J Obstet Gynecol Reprod Biol, 2008. 140(1): p. 3-11.
    2. Heinonen, P.K. and M. Leinonen, Fecundity and morbidity following acute pelvic inflammatory disease treated with doxycycline and metronidazole. Arch Gynecol Obstet, 2003. 268(4): p. 284-8.
    3. Doxanakis, A., et al., Missing pelvic inflammatory disease? Substantial differences in the rate at which doctors diagnose PID. Sex Transm Infect, 2008. 84(7): p. 518-23.
    4. Ness, R.B., et al., A cluster analysis of bacterial vaginosis-associated microflora and pelvic inflammatory disease. Am J Epidemiol, 2005. 162(6): p. 585-90.
    5. Heinonen, P.K. and A. Miettinen, Laparoscopic study on the microbiology and severity of acute pelvic inflammatory disease. Eur J Obstet Gynecol Reprod Biol, 1994. 57(2): p. 85-9.
    6. Chen, C.S. and H. Zhu, Protein microarrays. Biotechniques, 2006. 40(4): p. 423, 425, 427 passim.
    7. Chen, C.S., et al., A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli. Nat Methods, 2008. 5(1): p. 69-74.
    8. Chen, C.S., A.J. Baeumner, and R.A. Durst, Protein G-liposomal nanovesicles as universal reagents for immunoassays. Talanta, 2005. 67(1): p. 205-11.
    9. Chen, C.S. and R.A. Durst, Simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes with an array-based immunosorbent assay using universal protein G-liposomal nanovesicles. Talanta, 2006. 69(1): p. 232-8.
    10. Park, S. and R.A. Durst, Immunoliposome sandwich assay for the detection of Escherichia coli O157:H7. Anal Biochem, 2000. 280(1): p. 151-8.
    11. Ho, J.A. and R.A. Durst, Detection of fumonisin B1: comparison of flow-injection liposome immunoanalysis with high-performance liquid chromatography. Anal Biochem, 2003. 312(1): p. 7-13.
    12. Rucker, V.C., K.L. Havenstrite, and A.E. Herr, Antibody microarrays for native toxin detection. Anal Biochem, 2005. 339(2): p. 262-70.
    13. Haab, B.B., Multiplexed protein analysis using antibody microarrays and label-based detection. Methods Mol Med, 2005. 114: p. 183-94.
    14. Brown, H.L., et al., Clinical evaluation of affirm VPIII in the detection and identification of Trichomonas vaginalis, Gardnerella vaginalis, and Candida species in vaginitis/vaginosis. Infect Dis Obstet Gynecol, 2004. 12(1): p. 17-21.
    15. Bravo, A.B., et al., Validation of an immunologic diagnostic kit for infectious vaginitis by Trichomonas vaginalis, Candida spp., and Gardnerella vaginalis. Diagn Microbiol Infect Dis, 2009. 63(3): p. 257-60.
    16. Cauci, S., et al., Immunoglobulin A response against Gardnerella vaginalis hemolysin and sialidase activity in bacterial vaginosis. Am J Obstet Gynecol, 1998. 178(3): p. 511-5.
    17. Kaur, S., et al., Antitrichomonas IgG, IgM, IgA, and IgG subclass responses in human intravaginal trichomoniasis. Parasitol Res, 2008. 103(2): p. 305-12.
    18. Brook, I., Microbiology and management of polymicrobial female genital tract infections in adolescents. J Pediatr Adolesc Gynecol, 2002. 15(4): p. 217-26.
    19. Dodson, M.G., Optimum therapy for acute pelvic inflammatory disease. Drugs, 1990. 39(4): p. 511-22.
    20. Cauci, S., et al., Determination of immunoglobulin A against Gardnerella vaginalis hemolysin, sialidase, and prolidase activities in vaginal fluid: implications for adverse pregnancy outcomes. J Clin Microbiol, 2003. 41(1): p. 435-8.
    21. Donders, G., Diagnosis and management of bacterial vaginosis and other types of abnormal vaginal bacterial flora: a review. Obstet Gynecol Surv. 65(7): p. 462-73.
    22. Field, E., et al., Evaluation of clinical management of gonorrhoea using enhanced surveillance in South East Queensland. Sex Health. 7(4): p. 448-52.
    23. Shattock, R.M., et al., Detection of Chlamydia trachomatis in genital swabs: comparison of commercial and in house amplification methods with culture. Sex Transm Infect, 1998. 74(4): p. 289-93.
    24. Sweet, R.L. and R.S. Gibbs, Infectious Diseases of the Female Genital Tract, Fifth Edition Edited by Richard L. Sweet and Ronald S. Gibbs Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Williams, 2009 . 5 ed. 2009, Philadelphia, PA: Wolters Kluwer/Lippincott Williams & Williams. 469.
    25. WHO, Sexually Transmitted and Other
    Reproductive Tract Infections, in A guide to essential practice, R.H.a. Research, Editor. 2005. p. 40-49.
    26. Vickerman, P., et al., Detection of gonococcal infection : pros and cons of a rapid test. Mol Diagn, 2005. 9(4): p. 175-9.
    27. Unemo, M., et al., Global transmission of prolyliminopeptidase-negative Neisseria gonorrhoeae strains: implications for changes in diagnostic strategies. Sex Transm Infect, 2007. 83(1): p. 47-51.
    28. Rao, G.G., et al., Prevalence of Neisseria gonorrhoeae infection in young subjects attending community clinics in South London. Sex Transm Infect, 2008. 84(2): p. 117-21.
    29. Ryan, C.A., et al., Reproductive tract infections in primary healthcare, family planning, and dermatovenereology clinics: evaluation of syndromic management in Morocco. Sex Transm Infect, 1998. 74 Suppl 1: p. S95-105.
    30. Benzaken, A.S., et al., Diagnosis of gonococcal infection in high risk women using a rapid test. Sex Transm Infect, 2006. 82 Suppl 5: p. v26-8.
    31. Diallo, M.O., et al., Evaluation of simple diagnostic algorithms for Neisseria gonorrhoeae and Chlamydia trachomatis cervical infections in female sex workers in Abidjan, Cote d''Ivoire. Sex Transm Infect, 1998. 74 Suppl 1: p. S106-11.
    32. Wi, T., et al., Syndromic approach to detection of gonococcal and chlamydial infections among female sex workers in two Philippine cities. Sex Transm Infect, 1998. 74 Suppl 1: p. S118-22.
    33. Monteiro, E.F., C.J. Lacey, and D. Merrick, The interrelation of demographic and geospatial risk factors between four common sexually transmitted diseases. Sex Transm Infect, 2005. 81(1): p. 41-6.
    34. Romoren, M., et al., Chlamydia and gonorrhoea in pregnant Batswana women: time to discard the syndromic approach? BMC Infect Dis, 2007. 7: p. 27.
    35. Myziuk, L., B. Romanowski, and M. Brown, Endocervical Gram stain smears and their usefulness in the diagnosis of Chlamydia trachomatis. Sex Transm Infect, 2001. 77(2): p. 103-6.
    36. Schachter, J., et al., Enzyme immunoassay for diagnosis of gonorrhea. J Clin Microbiol, 1984. 19(1): p. 57-9.
    37. Alary, M., et al., Evaluation of a rapid point-of-care test for the detection of gonococcal infection among female sex workers in Benin. Sex Transm Infect, 2006. 82 Suppl 5: p. v29-32.
    38. Hardwick, R., G. Gopal Rao, and H. Mallinson, Confirmation of BD ProbeTec Neisseria gonorrhoeae reactive samples by Gen-Probe APTIMA assays and culture. Sex Transm Infect, 2009. 85(1): p. 24-6.
    39. Van Dyck, E., et al., Detection of Chlamydia trachomatis and Neisseria gonorrhoeae by enzyme immunoassay, culture, and three nucleic acid amplification tests. J Clin Microbiol, 2001. 39(5): p. 1751-6.
    40. Bignell, C., C.A. Ison, and E. Jungmann, Gonorrhoea. Sex Transm Infect, 2006. 82 Suppl 4: p. iv6-9.
    41. Gopal Rao, G., et al., Can culture confirmation of gonococcal infection be improved in female subjects found to be positive by nucleic acid amplification tests in community clinics? Sex Transm Infect, 2009. 85(7): p. 531-3.
    42. Lum, G., et al., A cluster of culture positive gonococcal infections but with false negative cppB gene based PCR. Sex Transm Infect, 2005. 81(5): p. 400-2.
    43. Ison, C., GC NAATs: is the time right? Sex Transm Infect, 2006. 82(6): p. 515.
    44. Kellogg, J.A., Impact of variation in endocervical specimen collection and testing techniques on frequency of false-positive and false-negative Chlamydia detection results. Am J Clin Pathol, 1995. 104(5): p. 554-9.
    45. Vickerman, P., et al., Sensitivity requirements for the point of care diagnosis of Chlamydia trachomatis and Neisseria gonorrhoeae in women. Sex Transm Infect, 2003. 79(5): p. 363-7.
    46. CDC, 2010 Treatment Guidelines for Sexually Transmitted Diseases. Morb Mortal Wkly Rep. 2010;59:1-109.
    , 2010. 2010(59): p. 1-109.
    47. Suzuki, K., et al., Evaluation of a rapid antigen detection test for Neisseria gonorrhoeae in urine sediment for diagnosis of gonococcal urethritis in males. J Infect Chemother, 2004. 10(4): p. 208-11.
    48. Ho, M.K., et al., Evaluation of replacing the existing diagnostic strategy for Neisseria gonorrhoeae and Chlamydia trachomatis infections with sole molecular testing of urine specimens in a sexually transmitted infection clinic setting. Sex Transm Infect, 2009. 85(5): p. 322-5.
    49. Verhelst, R., et al., Comparison between Gram stain and culture for the characterization of vaginal microflora: definition of a distinct grade that resembles grade I microflora and revised categorization of grade I microflora. BMC Microbiol, 2005. 5: p. 61.
    50. De Backer, E., et al., Quantitative determination by real-time PCR of four vaginal Lactobacillus species, Gardnerella vaginalis and Atopobium vaginae indicates an inverse relationship between L. gasseri and L. iners. BMC Microbiol, 2007. 7: p. 115.
    51. Su, W.H., et al., Diagnosis of Chlamydia infection in women. Taiwan J Obstet Gynecol. 50(3): p. 261-7.
    52. Timothy L. Clenney, S.K.J., Marion Owen, Vaginitis. CLINICS IN FAMILY PRACTICE, march, 2005. 7(1): p. 10.
    53. Lan, P.T., et al., Reproductive tract infections including sexually transmitted infections: a population-based study of women of reproductive age in a rural district of Vietnam. Sex Transm Infect, 2008. 84(2): p. 126-32.
    54. Schneider, H., et al., Screening for sexually transmitted diseases in rural South African women. Sex Transm Infect, 1998. 74 Suppl 1: p. S147-52.
    55. Christian, P., et al., Prevalence and risk factors of chlamydia and gonorrhea among rural Nepali women. Sex Transm Infect, 2005. 81(3): p. 254-8.
    56. WHO, SDI is promoting the development and evaluation of diagnostics that are ASSURED. Sexually transmitted diseases Diagnostics Initiative, 2011. About SDI(Priorities): p. 1.
    57. Huppert, J., E. Hesse, and C.A. Gaydos, What''s the Point? How Point-of-Care STI Tests Can Impact Infected Patients. Point Care. 9(1): p. 36-46.
    58. Raddi, M.S., A.F. Vidal, and D.M. Santana, Characteristics of gram-stained cervical smear from patients with Chlamydia trachomatis infection. Rev Latinoam Microbiol, 1993. 35(2): p. 159-61.
    59. Landis, S.J., et al., Value of the gram-stained urethral smear in the management of men with urethritis. Sex Transm Dis, 1988. 15(2): p. 78-84.
    60. Saxena, S.B. and D. Feriozi, An evaluation of urethral smear by Papanicolaou stain in men with urethritis. J Adolesc Health Care, 1988. 9(1): p. 76-81.
    61. Knud-Hansen, C.R., et al., Surrogate methods to diagnose gonococcal and chlamydial cervicitis: comparison of leukocyte esterase dipstick, endocervical gram stain, and culture. Sex Transm Dis, 1991. 18(4): p. 211-6.
    62. Nelson, H.D. and M. Helfand, Screening for chlamydial infection. Am J Prev Med, 2001. 20(3 Suppl): p. 95-107.
    63. Watson, E.J., et al., The accuracy and efficacy of screening tests for Chlamydia trachomatis: a systematic review. J Med Microbiol, 2002. 51(12): p. 1021-31.
    64. Bandea, C.I., et al., Evaluation of the rapid BioStar optical immunoassay for detection of Chlamydia trachomatis in adolescent women. J Clin Microbiol, 2009. 47(1): p. 215-6.
    65. Yin, Y.P., et al., Clinic-based evaluation of Clearview Chlamydia MF for detection of Chlamydia trachomatis in vaginal and cervical specimens from women at high risk in China. Sex Transm Infect, 2006. 82 Suppl 5: p. v33-7.
    66. Rani, R., et al., Is there any role for rapid tests for Chlamydia trachomatis? Int J STD AIDS, 2002. 13(1): p. 22-4.
    67. Mahilum-Tapay, L., et al., New point of care Chlamydia Rapid Test--bridging the gap between diagnosis and treatment: performance evaluation study. BMJ, 2007. 335(7631): p. 1190-4.
    68. Masek, B.J., et al., Performance of three nucleic acid amplification tests for detection of Chlamydia trachomatis and Neisseria gonorrhoeae by use of self-collected vaginal swabs obtained via an Internet-based screening program. J Clin Microbiol, 2009. 47(6): p. 1663-7.
    69. Van Der Pol, B., et al., Multicenter evaluation of the BDProbeTec ET System for detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine specimens, female endocervical swabs, and male urethral swabs. J Clin Microbiol, 2001. 39(3): p. 1008-16.
    70. Nelson HD, S.S., Helfand M. , Screening for Chlamydial Infection [Internet]. in Systematic Evidence Reviews, No. 3, R. (MD), Editor. April, 2001, AHRQ Publication No. 01-S003: Prepared by the Oregon Health Sciences University Evidence-based Practice Center under Contract No 290-97-0018.
    71. Uttamchandani, M., et al., Applications of microarrays in pathogen detection and biodefence. Trends Biotechnol, 2009. 27(1): p. 53-61.
    72. Palmer, H.M., et al., Prediction of antibiotic resistance using Neisseria gonorrhoeae multi-antigen sequence typing. Sex Transm Infect, 2008. 84(4): p. 280-4.
    73. Su, W.H., et al., Are we satisfied with the tools for the diagnosis of gonococcal infection in females? J Chin Med Assoc. 74(10): p. 430-4.

    QR CODE
    :::