跳到主要內容

簡易檢索 / 詳目顯示

研究生: 江之昀
Chih-yun Chiang
論文名稱: 以奈米小球製作二維光子晶體共振波導之研究
The Study of 2D Photonic Crystal Guided-Mode Resonance Waveguide by Using Nanosphere
指導教授: 張正陽
Jenq -Yang Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 64
中文關鍵詞: 二維共振波導
外文關鍵詞: 2D GMR
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用奈米球鋪排成六角晶格形狀,來製作奈米等級的結構,具有製作方便、大面積及較佳的規律性等優點,可應用於生物檢測器及彩色濾波器等方面。本論文提出以單層鋪排奈米球取代黃光微影製程,製作大面積週期性奈米結構的二維共振波導,達到製程簡單的目標。
    本論文利用嚴格耦合波理論方法模擬與設計出在週期780 nm時,分別探討填充因子,蝕刻深度以及旋轉角度對共振波長的影響。由以上參數改變的模擬結果可以得知,以週期780 nm的參數為例,其填充因子須大於0.6,才會有共振波長產生。蝕刻到底部的共振波導對於角度有較大的容忍度。我們以直徑750 nm的奈米球分別製作出不同週期之試片A:780 nm,B:753 nm及C:780 nm的二維共振波導濾波器其中試片C:780 nm的光柵為蝕刻到底部的結構。經由量測穿透頻譜的結果得知,試片A共振波長與半高寬λ(nm):Δλ(nm)為1106:17、1142: 22、1368:30,試片B共振波長為1155:27、1235:40、1365:24,試片C共振波長為1276:102、1624:151。同樣的驗證了其具有多模態的效果,而且試片C,在旋轉角度上有較高的容忍度。本研究驗證了以奈米小球製作二維共振波導濾波器的可行性,且可應用在寬頻濾波器,未來可改變奈米球週期來調製所需波長,應用到更多元件。


    This study fabricated a nano-structure in the shape of a hexagonal-lattice grating through the arrangement of nanospheres. This structure offers a number of advantages, including easy fabrication, excellent coverage, and structural regularity. Such structures have been applied to the development of biosensors and color filter. This study proposes that a single layer sedimentation of nanospheres be used as an easily fabricated alternative to photolithography .
    This study observed the resonance behavior of the proposed two dimensional guided-mode resonant through rigorous coupled-wave analysis (RCWA). Incident wavelength, grating thickness, and grating fill ratio were selected as the parameters for simulations. Using period = 780 nm as an example, when the fill ratio ≧ 0.6, resonance was achieved. By broadening the angular tolerance of the self-suspended subwavelength grating, this study fabricated a three two-dimensional guided-mode resonant filter.
    The measurement results of wavelength and full width half maximum (FWHM) were λ(nm):Δλ(nm), respectively. Sample A: 1106:17, 1142: 22, 1368:30; Sample B: 1155:27, 1235:40, 1365:24; Sample C: 1276:102, 1624:151. This study demonstrated that Sample C in multi-mode showed broadening of angular tolerance at an oblique angle of incidence.
    This study demonstrated that two-dimensional guided-mode resonance filters can be fabricated through the use of nanospheres, which can simplify the process of fabricating such devices.

    摘要 I ABSTRACT II 目錄 III 圖目錄 V 表目錄 IX 第一章 緒論 1 1.1共振波導濾波器簡介 1 1.2 研究動機 2 第二章 共振波導濾波器原理 3 2.1光柵繞射原理 4 2.2波導理論 6 2.3等效折射率理論 9 2.4共振波導原理 12 2.5嚴格耦合波理論 15 第三章 二維共振波導濾波器結構之設計 18 3.1 二維共振波導非極化相關之驗證 19 3.2 二維共振波導結構參數之設計 20 3.2.1 折射率對共振波長的關係 21 3.2.2角度容忍度對共振波長的關係 23 3.2.3波導深度對共振波長的關係 25 3.2.4光柵填充因子對共振波長的關係 27 第四章 二維共振波導濾波器的製作 30 4.1製程儀器介紹 30 4.1.1電漿輔助化學氣相沉積系統 31 4.1.2感應耦合電漿蝕刻機 32 4.2二維共振波導濾波器製作流程 33 第五章 二維共振波導濾波器量測 36 5.1量測儀器架設 36 5.2量測結果分析與討論 38 第六章 結論 44 參考文獻 46

    [1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T andWolff P A., “Extraordinary optical transmission through sub-wavelength hole arrays”, Nature, 1998. 391(12): p.667-669.
    [2] Nicholas M. Gunn., “Fabrication and biological evaluation of uniform extracellular matrix coatings on discontinuous photolithography generated micropallet arrays”, Journal of Biomedical Materials Research A, 2010 95A(2), p:401-412
    [3] R.W. Wood., “On a remarkable case of uneven distribution of light
    in adiffraction grating spectrum”, Philos. Mag. 1902.: p. 269-275.
    [4] A. Hessel and A. A. Oliner., “A new theory of Wood’s anomalies on optical gratings”, Applied Optics, 1965. 4(10): p. 1275-1299.
    [5] Magnusson, R. and S.S. Wang., “New Principle for Optical Filters”, Applied Physics Letters, 1992. 61(9): p. 1022-1024.
    [6] Cho, E.H., et al., “Two-dimensional photonic crystal color
    filterdevelopment”, Optics Express, 2009. 17(10): p. 8621-8629.
    [7] http://prod.114ep.com/272136.html.
    [8] Shi, L., et al., “Guided-mode resonance photonic crystal slab
    sensorsbased on bead monolayer geometry”, Optics Express, 2008.
    16(22):p. 17962-17971.
    [9] Stavroulakis, P.I.,N.Christou, and D.Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2009. 165(3): p. 186-189.
    [10] Jeong, G.H., et al., “Fabrication of low-cost mold and nanoimprint lithography using polystyrene nanosphere”, Microelectronic
    Engineering, 2010. 87(1): p. 51-55.
    [11] Chen, L.Y., et al., “High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes”, Optics Express, 2010. 18(8): p. 7664-7669.
    [12] Chen, J.J., et al., “Light Output Improvement of AlGaInP-Based LEDs With Nano-Mesh ZnO Layers by Nanosphere Lithography”, Ieee Photonics Technology Letters, 2010. 22(6): p. 383-385.
    [13] Ke, M.Y., et al., “Application of Nanosphere Lithography to LED Surface Texturing and to the Fabrication of Nanorod LED Arrays”, Ieee Journal of Selected Topics in Quantum Electronics, 2009. 15(4): p. 1242-1249.
    [14] Sun, C.H.,P.Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon”, Applied Physics Letters, 2008. 92: p. 061112-061112-3.
    [15] 塗宗儒,提升矽基板懸浮式導波模態共振濾波器之品質因素及側帶響應,中央大學,2007
    [16] Haynes, C.L. and R.P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics”, Journal of Physical Chemistry B, 2001. 105(24): p. 5599-5611.
    [17] S.Sinzinger and J.Jahns,Microoptics,Wiley-Vch,NEW
    York,166(1999)
    [18] R-C. Tyan.,et al., “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings”, Optics Letters,1996.21(10): p.761-763.
    [19] Boonruang, S., A. Greenwell, and M.G. Moharam, “Multiline
    two-dimensional guided-mode resonant filters”, Applied Optics,
    2006. 45(22): p. 5740-5747.
    [20] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave
    analysis of planar-grating diffraction”, J. Opt. Soc. Am., 1981.
    71(7): p. 811-818.
    [21] K. Knop.,et al., “Rigorous diffraction theory for transmission phase "grating with deep rectangular grooves”, J. Opt. Soc.Am.,1978.68(9): p. 1206-1210.
    [22] C-H. Lin.,et al., “Optical characterization of two-dimensiona
    l photonic crystals based on spectroscopic ellipsometry with
    rigorous coupled-wave analysis”, Microelectronic
    Engineering,2006.83: p. 1798-1804.
    [23] Brundrett D.L., et al., “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence”, Journal of the Optical Society of America a-Optics Image Science and Vision, 2000. 17(7): p. 1221-1230.
    [24] Cheong BH., et al., “High angular tolerant color filter using subwavelength grating”, Applied Physics Letters, 2009. 94: p. 213104-213104-3.

    QR CODE
    :::