| 研究生: |
江之昀 Chih-yun Chiang |
|---|---|
| 論文名稱: |
以奈米小球製作二維光子晶體共振波導之研究 The Study of 2D Photonic Crystal Guided-Mode Resonance Waveguide by Using Nanosphere |
| 指導教授: |
張正陽
Jenq -Yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 二維共振波導 |
| 外文關鍵詞: | 2D GMR |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用奈米球鋪排成六角晶格形狀,來製作奈米等級的結構,具有製作方便、大面積及較佳的規律性等優點,可應用於生物檢測器及彩色濾波器等方面。本論文提出以單層鋪排奈米球取代黃光微影製程,製作大面積週期性奈米結構的二維共振波導,達到製程簡單的目標。
本論文利用嚴格耦合波理論方法模擬與設計出在週期780 nm時,分別探討填充因子,蝕刻深度以及旋轉角度對共振波長的影響。由以上參數改變的模擬結果可以得知,以週期780 nm的參數為例,其填充因子須大於0.6,才會有共振波長產生。蝕刻到底部的共振波導對於角度有較大的容忍度。我們以直徑750 nm的奈米球分別製作出不同週期之試片A:780 nm,B:753 nm及C:780 nm的二維共振波導濾波器其中試片C:780 nm的光柵為蝕刻到底部的結構。經由量測穿透頻譜的結果得知,試片A共振波長與半高寬λ(nm):Δλ(nm)為1106:17、1142: 22、1368:30,試片B共振波長為1155:27、1235:40、1365:24,試片C共振波長為1276:102、1624:151。同樣的驗證了其具有多模態的效果,而且試片C,在旋轉角度上有較高的容忍度。本研究驗證了以奈米小球製作二維共振波導濾波器的可行性,且可應用在寬頻濾波器,未來可改變奈米球週期來調製所需波長,應用到更多元件。
This study fabricated a nano-structure in the shape of a hexagonal-lattice grating through the arrangement of nanospheres. This structure offers a number of advantages, including easy fabrication, excellent coverage, and structural regularity. Such structures have been applied to the development of biosensors and color filter. This study proposes that a single layer sedimentation of nanospheres be used as an easily fabricated alternative to photolithography .
This study observed the resonance behavior of the proposed two dimensional guided-mode resonant through rigorous coupled-wave analysis (RCWA). Incident wavelength, grating thickness, and grating fill ratio were selected as the parameters for simulations. Using period = 780 nm as an example, when the fill ratio ≧ 0.6, resonance was achieved. By broadening the angular tolerance of the self-suspended subwavelength grating, this study fabricated a three two-dimensional guided-mode resonant filter.
The measurement results of wavelength and full width half maximum (FWHM) were λ(nm):Δλ(nm), respectively. Sample A: 1106:17, 1142: 22, 1368:30; Sample B: 1155:27, 1235:40, 1365:24; Sample C: 1276:102, 1624:151. This study demonstrated that Sample C in multi-mode showed broadening of angular tolerance at an oblique angle of incidence.
This study demonstrated that two-dimensional guided-mode resonance filters can be fabricated through the use of nanospheres, which can simplify the process of fabricating such devices.
[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T andWolff P A., “Extraordinary optical transmission through sub-wavelength hole arrays”, Nature, 1998. 391(12): p.667-669.
[2] Nicholas M. Gunn., “Fabrication and biological evaluation of uniform extracellular matrix coatings on discontinuous photolithography generated micropallet arrays”, Journal of Biomedical Materials Research A, 2010 95A(2), p:401-412
[3] R.W. Wood., “On a remarkable case of uneven distribution of light
in adiffraction grating spectrum”, Philos. Mag. 1902.: p. 269-275.
[4] A. Hessel and A. A. Oliner., “A new theory of Wood’s anomalies on optical gratings”, Applied Optics, 1965. 4(10): p. 1275-1299.
[5] Magnusson, R. and S.S. Wang., “New Principle for Optical Filters”, Applied Physics Letters, 1992. 61(9): p. 1022-1024.
[6] Cho, E.H., et al., “Two-dimensional photonic crystal color
filterdevelopment”, Optics Express, 2009. 17(10): p. 8621-8629.
[7] http://prod.114ep.com/272136.html.
[8] Shi, L., et al., “Guided-mode resonance photonic crystal slab
sensorsbased on bead monolayer geometry”, Optics Express, 2008.
16(22):p. 17962-17971.
[9] Stavroulakis, P.I.,N.Christou, and D.Bagnall, “Improved deposition of large scale ordered nanosphere monolayers via liquid surface self-assembly”, Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2009. 165(3): p. 186-189.
[10] Jeong, G.H., et al., “Fabrication of low-cost mold and nanoimprint lithography using polystyrene nanosphere”, Microelectronic
Engineering, 2010. 87(1): p. 51-55.
[11] Chen, L.Y., et al., “High performance InGaN/GaN nanorod light emitting diode arrays fabricated by nanosphere lithography and chemical mechanical polishing processes”, Optics Express, 2010. 18(8): p. 7664-7669.
[12] Chen, J.J., et al., “Light Output Improvement of AlGaInP-Based LEDs With Nano-Mesh ZnO Layers by Nanosphere Lithography”, Ieee Photonics Technology Letters, 2010. 22(6): p. 383-385.
[13] Ke, M.Y., et al., “Application of Nanosphere Lithography to LED Surface Texturing and to the Fabrication of Nanorod LED Arrays”, Ieee Journal of Selected Topics in Quantum Electronics, 2009. 15(4): p. 1242-1249.
[14] Sun, C.H.,P.Jiang, and B. Jiang, “Broadband moth-eye antireflection coatings on silicon”, Applied Physics Letters, 2008. 92: p. 061112-061112-3.
[15] 塗宗儒,提升矽基板懸浮式導波模態共振濾波器之品質因素及側帶響應,中央大學,2007
[16] Haynes, C.L. and R.P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics”, Journal of Physical Chemistry B, 2001. 105(24): p. 5599-5611.
[17] S.Sinzinger and J.Jahns,Microoptics,Wiley-Vch,NEW
York,166(1999)
[18] R-C. Tyan.,et al., “Polarizing beam splitter based on the anisotropic spectral reflectivity characteristic of form-birefringent multilayer gratings”, Optics Letters,1996.21(10): p.761-763.
[19] Boonruang, S., A. Greenwell, and M.G. Moharam, “Multiline
two-dimensional guided-mode resonant filters”, Applied Optics,
2006. 45(22): p. 5740-5747.
[20] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave
analysis of planar-grating diffraction”, J. Opt. Soc. Am., 1981.
71(7): p. 811-818.
[21] K. Knop.,et al., “Rigorous diffraction theory for transmission phase "grating with deep rectangular grooves”, J. Opt. Soc.Am.,1978.68(9): p. 1206-1210.
[22] C-H. Lin.,et al., “Optical characterization of two-dimensiona
l photonic crystals based on spectroscopic ellipsometry with
rigorous coupled-wave analysis”, Microelectronic
Engineering,2006.83: p. 1798-1804.
[23] Brundrett D.L., et al., “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence”, Journal of the Optical Society of America a-Optics Image Science and Vision, 2000. 17(7): p. 1221-1230.
[24] Cheong BH., et al., “High angular tolerant color filter using subwavelength grating”, Applied Physics Letters, 2009. 94: p. 213104-213104-3.