| 研究生: |
王裕淵 Yu-yuan Wang |
|---|---|
| 論文名稱: |
應用氮化矽/二氧化矽/氮化矽堆疊形成電致可調變穿隧能障之鍺量子點電晶體之研製 Fabrication and Characterization of Germanium Quantum Dots MOSFET with Electric-field Induced Tunable Tunnel Barriers in Si3N4/SiO2/Si3N4 Stack. |
| 指導教授: |
李佩雯
Pei-wen Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 鍺浮點電晶體 、電致可調變穿隧能障 、非揮發性記憶體 |
| 外文關鍵詞: | E-field induced tunable tunnel barriers, nonvolatile memory, Ge floating dot transistor |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在探討利用兩種不同寬能隙的介電材料(氮化矽、二氧化矽)形成三層堆疊介電層以達到電致可調變穿隧能障之效,期望藉此可降低浮點電晶體的寫入與抹除之電壓,更可提升其寫入/抹除的效率。當閘極施予偏壓時,將使穿隧位能障產生近似對稱三角幾何的位能障來增加載子的寫入/抹除速度,並且利用低壓化學氣相沉積系統沉積複晶矽鍺並藉由濕氧化的方式形成鍺奈米晶粒的製程技術相結合實現出鍺浮點電晶體。本論文中是以氮化矽/二氧化矽/氮化矽堆疊所形成之穿隧介電層,其中的二氧化矽是在溫度為1050 oC 的環境下,以乾氧化氮化矽的方式所形成的。此製程方法能有效地控制穿隧介電層的等效氧化層厚度在5 nm 以下。且藉由不同寬能隙材料堆疊所形成對稱三角幾何的穿隧位能障,更能有效的降低元件的操作偏壓以及提升元件的操作速度與耐用性,又能保有元件的儲存能力。本實驗所製作而成的鍺浮點電晶體,寫入/抹除操作偏壓可降低至8 V 以及-6 V、操作速度分別可達到1 ms 以及70 μs,便可使得元件產生0.6 V 的記憶窗口。在儲存能力方面,儲存時間經過1E8 秒之後,儲存的電荷量尚保存原本的58 %。而在耐用性方面,元件的寫入/抹除操作次數可達到1E6 次以上。
In this thesis, we explored two wide bandgap insulators, silicon-dioxide and silicon nitride, as a stacked dielectric for forming a tunable tunnel barrier under electric-field modulation. The so-formed tunnel dielectric behaves like a symmetric quasi-triangle potential barrier, which is expected to enhance the read and write speeds for memory application. In addition, we also incorporate germanium quantum dots (QDs) to replace the floating poly-Si gate, so that a high speed and good charge retention Ge QDs flash memory is demonstrated.
The stacked tunnel dielectric of Si3N4/SiO2/Si3N4 is produced by thermally oxidizing amorphous Si3N4 at 1050 oC and its equivalent oxide thickness (EOT) is less than 5 nm. The so-formed stacked tunnel dielectric behaves like a quasi-triangle potential barrier under E-field manipulation. Incorporating Ge QDs with the quasi-triangle tunnel barrier into the MOSFET structure, we realized a floating-dot nonvolatile memory cell transistor with the write/read voltages of +8 V and -6 V, write/read time of 1 ms and 70 μs at a threshold voltage shift (ΔVTH = 0.6 V). This Ge QDs transistor have good charge retention of 58 % after 1E8 s and excellent endurance after more than 1E6 read/write operations.
參考文獻
[1] Roberto Bez et al, “Introduction to Flash Memory,” Proc. IEEE ,vol. 91,No. 4, 2003.
[2] S. M. Sze, Kwok K. Ng, Physics of Semiconductor Device. p. 350-351.
[3] S. M. Sze, Kwok K. Ng, Physics of Semiconductor Device. p. 352-360.
[4] W. K. Shih, E. X. Wang, S. Jallepalli, F. Leon, C. M. Maziar, and A. F. Tasch, Jr., “Modeling gate leakage current in nMOS structure due to tunneling through an ultra-thin oxide,” Solid-State Electron., 42, 997(1998).
[5] Sandip Tiwari, “A silicon nanocrystals based memory,” Applied Physics Letters, vol. 68, p. 1377, 1996.
[6] J. Dufourcq et al, “High density platinum nanocrystals for non-volatile memory applications,” Applied Physics Letters, vol. 92, pp. 073102, 2008.
[7] J. J. Lee, Dim-Lee Kwong, “Metal nanocrystal memory with high-k tunneling barrier for improved data retention,” IEEE Transaction on Electron Devices, vol.52, pp.507-511, 2005.
[8] S. Maikap et al, “Physical and electrical characteristics of atomic layer deposited TiN nanocrystal memory capacitors,” Applied Physics Letters, vol. 91, pp. 043114, 2007.
[9] 楊露瑜, “應用氮化矽作為穿隧介電層之鍺量子點電晶體之研製”,碩士論文,國立中央大學,民國97年。
[10] Byoungjun Park et al., “Memory characteristics of Al nanocrystals embedded in Al2O3 layers,” Microelectronic Engineering, vol. 84, 2007, p. 1627-1630.
[11] X. Wang et al., “A novel high-k SONOS memory using TaN/Al2O3/Ta2O5/HfO2/Si structure for fast speed and long retention operation,” IEEE Transaction on Electron Devices, vol. 53, No.1, 2006.
[12] Konstantin K. Likharev, “Layered tunnel barriers for nonvolatile memory devices,” Applied Physics Letters, vol. 73, No. 15, 1998.
[13] Y. Liu et al, “Improved performance of SiGe nanocrystal memory with VARIOT tunnel barrier,” IEEE Trans. Electron. Device, vol. 53, No. 10, pp. 2598-2602, 2006.
[14] Julie D. Casperson et al, “Materials issues for layered tunnel barrier structure,” J. Appl. Phys., vol. 92, No. 1, pp.261-267, 2002.
[15] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dots formed by thermal oxidation of Si1-xGex-on-insulator,” Nanotechnology, vol. 18, p. 145402, 2007.
[16] A. S. Grove, Physics and Technology of Semiconductor Devices. New York:Wiley, 1967.
[17] Yuan Taur, Tak H. Ning, Foundamentals of Modern VLSI Devices. p. 96.
[18] Y. Takahashi and K. Ohnishi, “Estimation of Insulation Layer Conductance in MNOS Structure,” IEEE Trans. Electron Dev., ED-40, 2006 (1993).
[19] J. H. Wu and P. W. Li, “Ge nanocrystals metal-oxide-semiconductor transistors with Ge nanocrystals formed by thermal oxidation of poly-Si0.88Ge0.12,” Semiconductor Science and Technology, vol. 22, p. S89, 2001.
[20] K. K. Ng and G. W. Taylor, “Effects of Hot-Carrier Trapping in n- and p-Channel MOSFET’s,” IEEE Trans. Electron Dev., ED-30, 871 (1983).
[21] Chuan-Hsi Liu and Jin-Lai Chen, Semiconductor Device Physics and Process:Theory & Practice. P.235.
[22] S. M. Sze, Kwok K. Ng, Physics of Semiconductor Device. p. 227-229.
[23] Zhung L, Gyo L and Chou S. Y., IEEE Int. Electron Devices Meeting, p. 167, 1997.
[24] Y. Maeda et al, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Applied Physics Letters, vol. 59, p. 3168, 1991.
[25] K. V. Shcheglov, et al, “Electroluminescence and photoluminescence of Ge-implanted Si/SiO2/Si structures,” Applied Physics Letters, vol. 66, p. 745, 1995.
[26] Valentin Craciun et al, “Light emission from germanium nanoparticles formed by ultraviolet assisted oxidation of silicon-germanium,” Applied Physics Letters, vol. 69, p. 1506, 1996.
[27] P. W. Li et al, “Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Applied Physics Letters, vol. 83, p. 4628, 2003.
[28] T. Kobayashi et al, “Ge nanocrystals in SiO2 films,” Applied Physics Letters, vol. 71, p. 1195, 1997.
[29] Tsu-Jae King and K. C. Saraswat, “Deposition and properties of low-pressure chemical-vapor deposited polycrystalline silicon-germanium films,” Journal of Electrochemical Society, vol. 141, No. 8, p. 2235, 1994.
[30] Min Cao, Albert Wang, Krishna C. Saraswat, “Low pressure chemical vapor deposition of Si1-XGeX film on SiO2,” Journal of Electrochemical Society, vol. 142, No. 5, p. 1566, 1995.
[31] S. S. Tzeng and P. W. Li, “Enhanced 400-600 nm photoresponsivity of metal-oxide-semiconductor diodes with multi-stack germanium quantum dots,” Nanotechnology, vol. 19, p. 235203, 2008.
[32] 徐紹華, “具有自我對準下閘電極鍺量子點單電洞電晶體之研製”,碩士論文,國立中央大學,民國96年。
[33] Honghua Du, Richard E. Tressler, and Karl E. Spear, “Thermodynamics of the Si-N-O system and kinetic modeling of oxidation of Si3N4,” Journal of Electrochemical Society, vol. 136, No. 11, p. 3210, 1989.
[34] 曾柏皓, “鍺量子點嵌入二氧化矽/氮化矽/二氧化矽層之浮點電晶體研製”,碩士論文,國立中央大學,民國99年。
[35] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effects of Ge concentration on SiGe oxidation behavior,” Applied Physics Letters, vol. 59, p. 1200, 1991.
[36] 陳冠宏, “應用於高效率單電子元件鍺量子點之研製:鍺量子點定位與定量之探討”,碩士論文,國立中央大學,民國98年。
[37] 汪建民,Materials Analysis. p. 224-234.
[38] M. H. White et al, “On the go with SONOS,” IEEE Circuits Devices Mag., vol. 16, No. 4, pp. 22-31, Jul. 2000.
[39] 許書豪, “非揮發性鍺量子點掩埋於二氧化矽/氮化矽複合穿隧介電曾知MOS電容研製與載子傳輸機制之探討”,碩士論文,國立中央大學,民國97年。