| 研究生: |
劉潤雨 Run-Yu Liu |
|---|---|
| 論文名稱: |
臭氧催化氧化降解低濃度甲醛之研究 Degradation of Low-concentration Formaldehyde via Ozone Catalytic Oxidation |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 臭氧 、甲醛 、揮發性有機物 、臭氧催化氧化 |
| 外文關鍵詞: | ozone, formaldehyde, volatile organic compounds, ozone catalytic oxidation |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
甲醛為常見的室內污染物,其來源十分廣泛。長期接觸甲醛會造成致敏、致畸、致癌效應,嚴重威脅人們的生命安全,因此通過高效無毒的方式去除甲醛成為亟待解決的問題。在許多脫除甲醛的方法中,臭氧催化氧化法是一種經濟、高效的方法,可通過臭氧在觸媒表面被分解帶來的強氧化性自由基將甲醛氧化為無毒的二氧化碳及水。然而,臭氧同樣作為一種空氣污染物,即使低濃度臭氧也會與空氣中有機物反應產生化學作用,嚴重危害人體及健康環境。因此,在臭氧催化氧化甲醛的研究重難點在於如何開發可在低溫下,將臭氧及甲醛完全氧化的觸媒。其中,錳基氧化物觸媒,由於其相對低廉的價格和優異的性能受到研究人員的廣泛關注。本研究針對錳基觸媒進行改性研究,通過於溶膠-凝膠法合成過程中摻雜過渡金屬(Ce,Ni)製備MnCeNiOx觸媒。通過優化摻雜比例發現,當Mn:Ce:Ni比例為1時觸媒活性最佳。並利用共沉澱法製備的FeOx對觸媒進行改質,進一步提升對甲醛的催化活性。結果顯示FeOx-MnCeNiOx在室溫下,相對濕度90%時,對1,000 ppm的臭氧具有100%的轉化效率。在100℃時可將15 ppm 甲醛完全氧化為二氧化碳和水。同時,在室溫下添加45 ppm的臭氧,對甲醛的轉化率達95%,並且在72 hr的長週期測試中保證其催化效果的穩定性。同時, BET結果顯示添加FeOx導致觸媒比表面積顯著增加。XPS 結果顯示,經由FeOx改質後觸媒中Mn3+,Ce3+及表面吸附氧濃度明顯提升,進而提升觸媒之氧空位數量。同時XRD結果表明,FeOx的添加增強了金屬之間的協同作用,因此對臭氧催化氧化甲醛轉換的正面影響,根據反應前後特性分析結果,提出了可能的臭氧催化氧化甲醛的反應機理。綜上所述,本研究製備了一種在室溫下,對於低濃度甲醛具高催化活性、穩定性的新型觸媒,在未來室內空氣空氣品質治理中,該觸媒具有良好的實際應用前景。
Formaldehyde (HCHO) is a common indoor air pollutant. Long-term exposure to HCHO causes allergic, teratogenic, and carcinogenic effects. Among the methods for removing HCHO, ozone catalytic oxidation (OZCO) is an economical and efficient method, which oxidizes HCHO to CO2 and H2O through the strong oxidizing radical when the ozone is decomposed on catalysts. However, ozone is also an air pollutant, even low concentrations of ozone will react with organic matter in the air to produce adverse effects, which will seriously harm the human body and the environment. Therefore, the key issues in the research of OZCO of HCHO are identified and development of catalyst that completely decompose ozone and HCHO at room temperatures is essential. Among them, the manganese-based oxide catalyst has received extensive attention from researchers due to its relatively low price and excellent performance. In this study, modification of manganese-based catalysts was carried out and MnCeNiOx was prepared by doping transition metals (Ce, Ni) during the sol-gel synthesis process. By optimizing the doping ratio, it is found that the catalyst activity is the best when the ratio of Mn:Ce:Ni is 1. The FeOx prepared by the co-precipitation method is used to modify the catalyst to further enhance the catalytic activity for HCHO removal. The results show that FeOx-MnCeNiOx has a 100% conversion efficiency for 1,000 ppm ozone at room temperature and a relative humidity of 90%. Complete oxidation of 15 ppm HCHO to CO2 and H2O(g) is achieved at 100℃. As 45 ppm of ozone is added at room temperature, the HCHO conversion rate reached 95%, and the stability of its catalytic effect is ensured in the 72 hr long-period test. At the same time, BET, XRD, XPS and other characterization methods proved the beneficial effect of the synergy among various metals in the FeOx-MnCeNiOx catalyst on the conversion of ozone-catalyzed oxidation of HCHO. Meanwhile, the reaction mechanism of ozone-catalyzed oxidation of HCHO is proposed. In summary, this study prepared a new type of catalyst with high catalytic activity and stability for low-concentration HCHO removal at room temperature, and this catalyst has good practical application prospects.
Aghbolaghy, M., Soltan, J., Chen, N., 2017. Role of surface carboxylates in the gas phase ozone-assisted catalytic oxidation of toluene. Catalysis Letters 147, 2421-2433.
Atkinson, R., 2000. Atmospheric chemistry of VOCs and NOx. Atmospheric environment 34, 2063-2101.
Cao, R., Zhang, P., Liu, Y., Zheng, X., 2019. Ammonium-treated birnessite-type MnO2 to increase oxygen vacancies and surface acidity for stably decomposing ozone in humid condition. Applied Surface Science 495.
Chen, B., Shi, C., Crocker, M., Wang, Y., Zhu, A., 2013. Catalytic removal of formaldehyde at room temperature over supported gold catalysts. Applied Catalysis B: Environmental 132-133, 245-255.
Chen, B., Zhu, X., Crocker, M., Wang, Y., Shi, C., 2014. FeOx-supported gold catalysts for catalytic removal of formaldehyde at room temperature. Applied Catalysis B: Environmental 154-155, 73-81.
Chen, S., Yan, Q., Zhang, C., Wang, Q., 2019. A novel highly active and sulfur resistant catalyst from Mn-Fe-Al layered double hydroxide for low temperature NH3-SCR. Catalysis Today 327, 81-89.
Chen, Z., Wang, F., Li, H., Yang, Q., Wang, L., Li, X., 2011. Low-temperature selective catalytic reduction of NOx with NH3 over Fe–Mn mixed-oxide catalysts containing Fe3Mn3O8 phase. Industrial & Engineering Chemistry Research 51, 202-212.
Cho, S., Kim, K., Park, M., Lee, K., Choi, J., 2009. Ventilation performance by the concentration change of HCHO and TVOC with three models of two ventilation systems and one natural condition. Journal of Asian Architecture and Building Engineering.
Cui, W., Xue, D., Yuan, X., Zheng, B., Jia, M., Zhang, W., 2017. Acid-treated TiO2 nanobelt supported platinum nanoparticles for the catalytic oxidation of formaldehyde at ambient conditions. Applied Surface Science 411, 105-112.
Daniells, S., Overweg, A., Makkee, M., Moulijn, J., 2005. The mechanism of low-temperature CO oxidation with Au/Fe2O3 catalysts: a combined Mössbauer, FT-IR, and TAP reactor study. Journal of Catalysis 230, 52-65.
Du, H., Han, Z., Wang, Q., Gao, Y., Gao, C., Dong, J., Pan, X., 2020. Effects of ferric and manganese precursors on catalytic activity of Fe-Mn/TiO2 catalysts for selective reduction of NO with ammonia at low temperature. Environmental Science and Pollution Research 27, 40870-40881.
Einaga, H., Futamura, S., 2006. Effect of water vapor on catalytic oxidation of benzene with ozone on alumina-supported manganese oxides. Journal of Catalysis 243, 446-450.
Gong, S., Chen, J., Wu, X., Han, N., Chen, Y., 2018a. In-situ synthesis of Cu2O/reduced graphene oxide composite as effective catalyst for ozone decomposition. Catalysis Communications 106, 25-29.
Gong, S., Wang, A., Wang, Y., Liu, H., Han, N., Chen, Y., 2019a. Heterostructured Ni/NiO nanocatalysts for ozone decomposition. ACS Applied Nano Materials 3, 597-607.
Gong, S., Wang, A., Zhang, J., Guan, J., Han, N., Chen, Y., 2020. Gram-scale synthesis of ultra-fine Cu2O for highly efficient ozone decomposition. RSC Advances 10, 5212-5219.
Gong, S., Wu, X., Zhang, J., Han, N., Chen, Y., 2018b. Facile solution synthesis of Cu2O–CuO–Cu(OH)2 hierarchical nanostructures for effective catalytic ozone decomposition. CrystEngComm 20, 3096-3104.
Gong, S., Xie, Z., Li, W., Wu, X., Han, N., Chen, Y., 2019b. Highly active and humidity resistive perovskite LaFeO3 based catalysts for efficient ozone decomposition. Applied Catalysis B: Environmental 241, 578-587.
Greiner, M.T., Helander, M.G., Wang, Z., Tang, W., Lu, Z., 2010. Effects of processing conditions on the work function and energy-level alignment of NiO thin films. The Journal of Physical Chemistry C 114, 19777-19781.
Guillemot, M., Mijoin, J., Mignard, S., Magnoux, P., 2007. Volatile organic compounds (VOCs) removal over dual functional adsorbent/catalyst system. Applied Catalysis B: Environmental 75, 249-255.
Haruta, M., Ueda, A., Tsubota, S., Sanchez, R.T., 1996. Low-temperature catalytic combustion of methanol and its decomposed derivatives over supported gold catalysts. Catalysis Today 29, 443-447.
Haruta, M., Yamada, N., Kobayashi, T., Iijima, S., 1989. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis 115, 301-309.
Huang, B., Saka, S., 2003. Photocatalytic activity of TiO2 crystallite-activated carbon composites prepared in supercritical isopropanol for the decomposition of formaldehyde. Journal of Wood Science 49, 0079-0085.
Huang, Q., Yan, X., Li, B., Chen, Y., Zhu, S., Shen, S., 2013. Photocatalytic decomposition of gaseous HCHO by N-Zr-TiO2 catalysts, Advanced Materials Research. Trans Tech Publ, pp. 44-49.
Hutchings, G.J., Hall, M.S., Carley, A.F., Landon, P., Solsona, B.E., Kiely, C.J., Herzing, A., Makkee, M., Moulijn, J.A., Overweg, A., 2006. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. Journal of Catalysis 242, 71-81.
Jia, J., Zhang, P., Chen, L., 2016. Catalytic decomposition of gaseous ozone over manganese dioxides with different crystal structures. Applied Catalysis B: Environmental 189, 210-218.
Kim, K., Jeong, M.I., Lee, D., Song, J., Kim, H., Yoo, E., Jeong, S., Han, S., 2010. Variation in formaldehyde removal efficiency among indoor plant species. American Society for Horticultural Science.
Kim, M., Park, E., Jurng, J., 2018. Oxidation of gaseous formaldehyde with ozone over MnOx/TiO2 catalysts at room temperature (25°C). Powder Technology 325, 368-372.
Kondo, T., Morikawa, Y., Hayashi, N., Kitamoto, N., 2002. Purification and characterization of formate oxidase from a formaldehyde-resistant fungus. FEMS microbiology letters 214, 137-142.
Li, C., Shen, Y., Jia, M., Sheng, S., Adebajo, M.O., Zhu, H., 2008. Catalytic combustion of formaldehyde on gold/iron-oxide catalysts. Catalysis Communications 9, 355-361.
Li, D., Yang, G., Li, P., Wang, J., Zhang, P., 2016. Promotion of formaldehyde oxidation over Ag catalyst by Fe doped MnOx support at room temperature. Catalysis Today 277, 257-265.
Li, J., Pan, K., Yu, S., Yan, S., Chang, M., 2014. Removal of formaldehyde over MnxCe(1-x)O2 catalysts: thermal catalytic oxidation versus ozone catalytic oxidation. Journal of Environmental Science (China) 26, 2546-2553.
Li, J., Yu, E., Cai, S., Chen, X., Chen, J., Jia, H., Xu, Y., 2019. Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light. Applied Catalysis B: Environmental 240, 141-152.
Li, X., Ma, J., He, H., 2020. Recent advances in catalytic decomposition of ozone. Journal of Environmental Science (China) 94, 14-31.
Liu, Y., Zhang, P., Zhan, J., Liu, L., 2019. Heat treatment of MnCO3: An easy way to obtain efficient and stable MnO2 for humid O3 decomposition. Applied Surface Science 463, 374-385.
Lu, L., Tian, H., He, J., Yang, Q., 2016. Graphene–MnO2 hybrid nanostructure as a eew catalyst for formaldehyde oxidation. The Journal of Physical Chemistry C 120, 23660-23668.
Ma, J., Li, X., Zhang, C., Ma, Q., He, H., 2020. Novel CeMnaOx catalyst for highly efficient catalytic decomposition of ozone. Applied Catalysis B: Environmental 264.
Miao, L., Wang, J., Zhang, P., 2019. Review on manganese dioxide for catalytic oxidation of airborne formaldehyde. Applied Surface Science 466, 441-453.
Nie, L., Yu, J., Li, X., Cheng, B., Liu, G., Jaroniec, M., 2013. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environmental science & technology 47, 2777-2783.
Oyama, S.T., 2000. Chemical and catalytic properties of ozone. Catalysis Reviews 42, 279-322.
Photong, S., Boonamnuayvitaya, V., 2009. Preparation and characterization of amine-functionalized SiO2/TiO2 films for formaldehyde degradation. Applied Surface Science 255, 9311-9315.
Qiao, B., Wang, A., Yang, X., Allard, L.F., Jiang, Z., Cui, Y., Liu, J., Li, J., Zhang, T., 2011. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature chemistry 3, 634-641.
Quiroz, J., Giraudon, J., Gervasini, A., Dujardin, C., Lancelot, C., Trentesaux, M., Lamonier, J., 2015. Total oxidation of formaldehyde over MnOx-CeO2 catalysts: The effect of acid treatment. ACS Catalysis 5, 2260-2269.
Radmilovic, V., Gasteiger, H., Ross, P., 1995. Structure and chemical composition of a supported Pt-Ru electrocatalyst for methanol oxidation. J. Catal. 154, 98-106.
Reed, C., Lee, Y., Oyama, S.T., 2006. Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone. The Journal of Physical Chemistry B 110, 4207-4216.
Rong, H., Ryu, Z., Zheng, J., Zhang, Y., 2003. Influence of heat treatment of rayon-based activated carbon fibers on the adsorption of formaldehyde. Journal of colloid and interface science 261, 207-212.
S. Pekárek, J. Mikeš, Krýsa., J., 2015. Comparative study of TiO2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air. Applied Catalysis A: General 502, 122-128.
Schmitz, H., Hilgers, U., Weidner, M., 2009. Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytologist Trust.
Song, Z., Wang, B., Yang, W., Chen, T., Ma, C., Sun, L., 2020. Simultaneous removal of NO and SO2 through heterogeneous catalytic oxidation-absorption process using magnetic Fe2.5M0.5O4 (M = Fe, Mn, Ti and Cu) catalysts with vaporized H2O2. Chemical Engineering Journal 386.
Sun, Y., Li, N., Xing, X., Zhang, X., Zhang, Z., Wang, G., Cheng, J., Hao, Z., 2019. Catalytic oxidation performances of typical oxygenated volatile organic compounds (acetone and acetaldehyde) over MAlO (M = Mn, Co, Ni, Fe) hydrotalcite-derived oxides. Catalysis Today 327, 389-397.
Tang, W., Liu, H., Wu, X., Chen, Y., 2014. Higher oxidation state responsible for ozone decomposition at room temperature over manganese and cobalt oxides: effect of calcination temperature. Ozone: Science & Engineering 36, 502-512.
Tang, X., Chen, J., Huang, X., Xu, Y., Shen, W., 2008. Pt/MnOx–CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature. Applied Catalysis B: Environmental 81, 115-121.
Tang, X., Li, Y., Huang, X., Xu, Y., Zhu, H., Wang, J., Shen, W., 2006. MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Applied Catalysis B: Environmental 62, 265-273.
Tao, L., Zhao, G., Chen, P., Zhang, Z., Liu, Y., Lu, Y., 2019. High-performance Co-MnOx composite oxide catalyst structured onto Al-fiber felt for high-throughput O3 decomposition. ChemCatChem 11, 1131-1142.
Trovarelli, A., 2002. Catalysis by ceria and related materials. World Scientific.
Vannice, M.A., 2007. An analysis of the Mars–van Krevelen rate expression. Catalysis Today 123, 18-22.
Wang, C., Ma, J., Liu, F., He, H., Zhang, R., 2015a. The effects of Mn2+ precursors on the structure and ozone decomposition activity of cryptomelane-type manganese oxide (OMS-2) catalysts. The Journal of Physical Chemistry C 119, 23119-23126.
Wang, C., Ma, J., Liu, F., He, H., Zhang, R., 2015b. The effects of Mn2+ precursors on the structure and ozone decomposition activity of cryptomelane-type manganese oxide (OMS-2) catalysts. The Journal of Physical Chemistry C 119, 23119-23126.
Wang, H., Huang, Z., Jiang, Z., Jiang, Z., Zhang, Y., Zhang, Z., Shangguan, W., 2018. Trifunctional C@MnO catalyst for enhanced stable simultaneously catalytic removal of formaldehyde and ozone. ACS Catalysis 8, 3164-3180.
Wang, H., Ning, P., Zhang, Y., Ma, Y., Wang, J., Wang, L., Zhang, Q., 2020a. Highly efficient WO3-FeOx catalysts synthesized using a novel solvent-free method for NH3-SCR. Journal of hazardous materials 388, 121812.
Wang, J., Li, D., Li, P., Zhang, P., Xu, Q., Yu, J., 2015c. Layered manganese oxides for formaldehyde-oxidation at room temperature: the effect of interlayer cations. RSC Advances 5, 100434-100442.
Wang, J., Nie, Z., An, Z., Bai, H., Wang, F., Zhang, X., Li, Y., Wang, C., 2019. Improvement of SO2 Resistance of Low-Temperature Mn-Based Denitration Catalysts by Fe Doping. ACS Omega 4, 3755-3760.
Wang, J., Zhang, P., Li, J., Jiang, C., Yunus, R., Kim, J., 2015d. Room-temperature oxidation of formaldehyde by layered manganese oxide: effect of water. Environmental science & technology 49, 12372-12379.
Wang, Y., Wang, G., Deng, W., Han, J., Qin, L., Zhao, B., Guo, L., Xing, F., 2020b. Study on the structure-activity relationship of Fe-Mn oxide catalysts for chlorobenzene catalytic combustion. Chemical Engineering Journal 395.
Xu, H., Fu, Q., Yao, Y., Bao, X., 2012. Highly active Pt–Fe bicomponent catalysts for CO oxidation in the presence and absence of H2. Energy & Environmental Science 5, 6313-6320.
Yu, Y., Ji, J., Li, K., Huang, H., Shrestha, R.P., Kim Oanh, N.T., Winijkul, E., Deng, J., 2020. Activated carbon supported MnO nanoparticles for efficient ozone decomposition at room temperature. Catalysis Today 355, 573-579.
Zhang, C., He, H., Tanaka, K.-i., 2006. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental 65, 37-43.
Zhang, C., Liu, F., Zhai, Y., Ariga, H., Yi, N., Liu, Y., Asakura, K., Flytzani Stephanopoulos, M., He, H., 2012. Alkali-metal-promoted Pt/TiO2 opens a more efficient pathway to formaldehyde oxidation at ambient temperatures. Angewandte Chemie International Edition 51, 9628-9632.
Zhang, M., Li, C., Qu, L., Fu, M., Zeng, G., Fan, C., Ma, J., Zhan, F., 2014. Catalytic oxidation of NO with O2 over FeMnOx/TiO2: Effect of iron and manganese oxides loading sequences and the catalytic mechanism study. Applied Surface Science 300, 58-65.
Zhang, Y., Chen, M., Zhang, Z., Jiang, Z., Shangguan, W., Einaga, H., 2019. Simultaneously catalytic decomposition of formaldehyde and ozone over manganese cerium oxides at room temperature: Promotional effect of relative humidity on the MnCeOx solid solution. Catalysis Today 327, 323-333.
Zhao, D., Ding, T., Li, X., Liu, J., Shi, C., Zhu, A., 2012a. Ozone catalytic oxidation of HCHO in air over MnOx at room temperature. Chinese Journal of Catalysis 33, 396-401.
Zhao, D., Li, X., Shi, C., Fan, H., Zhu, A., 2011. Low-concentration formaldehyde removal from air using a cycled storage–discharge (CSD) plasma catalytic process. Chemical Engineering Science 66, 3922-3929.
Zhao, D., Shi, C., Li, X., Zhu, A., Jang, B., 2012b. Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature. Journal of hazardous materials 239-240, 362-369.
Zhu, B., Li, X., Sun, P., Liu, J., Ma, X., Zhu, X., Zhu, A., 2017a. A novel process of ozone catalytic oxidation for low concentration formaldehyde removal. Chinese Journal of Catalysis 38, 1759-1769.
Zhu, G., Zhu, J., Jiang, W., Zhang, Z., Wang, J., Zhu, Y., Zhang, Q., 2017b. Surface oxygen vacancy induced α-MnO2 nanofiber for highly efficient ozone elimination. Applied Catalysis B: Environmental 209, 729-737.
Zhu, G., Zhu, J., Li, W., Yao, W., Zong, R., Zhu, Y., Zhang, Q., 2018. Tuning the K+ concentration in the tunnels of alpha-MnO2 to increase the content of oxygen vacancy for ozone elimination. Environmental science & technology 52, 8684-8692.
Zhu, L., Wang, J., Rong, S., Wang, H., Zhang, P., 2017c. Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature. Applied Catalysis B: Environmental 211, 212-221.
中華民國衛生福利部國民健康署,2020年報.
梁煜申,鈀觸媒處理焚化廢氣中 CO、NO 之動力研究,國立中興大學環境工程研究所碩士論文,台灣 (2003)。