跳到主要內容

簡易檢索 / 詳目顯示

研究生: 呂淑如
Shu-Ru Lu
論文名稱: 水及空氣在小管內之壓降實驗分析
指導教授: 楊建裕
Chien-Yuh Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 89
中文關鍵詞: 入口壓出口壓降加速度壓降摩擦壓降
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 實驗結果顯示,水在層流時,管內摩擦壓降與(f=16/ReD)方程式相吻合;紊流時,管內摩擦壓降和Blasius(f=0.079ReD-0.25)方程式的預測值十分的接近。空氣在層流時,管內摩擦壓降接近(f=16/ReD)方程式的預測;紊流時,管內的摩擦壓降低於Blasius〔1913〕方程式,且管徑愈小誤差愈大。由空氣摩擦因子的趨勢,預測空氣的熱傳會較低,且管徑愈小熱傳愈差。


    目 錄 摘要………………………………………………………………..i 目錄………………………………………………………….…….ii 表目錄……………………………………………………….…….iv 圖目錄……………………………………………………………..v 符號說明…………………………………………………….…….vii 第一章 前言………………………………………………………1 1.1 研究背景……………………………………………….1 1.2 研究目的……………………………………………….2 第二章 文獻回顧………………………………………………..3 2.1 管內摩擦係數………………………………………….3 2.1.1 平滑管之摩擦係數……………………………….4 2.1.2 粗糙管之摩擦係數………………………….……5 2.1.3 微小管之摩擦係數……………………………….8 2.2 管內的熱傳分析………………………………………11 2.2.1 平滑管內的熱傳係數……………………………12 2.2.2 微小管之熱傳係數………………………………16 第三章 實驗系統與方法…………………………………….…29 3.1 簡介……………………………………………………29 3.2 測試段…………………………………………………30 3.3 水循環系統……………………………………………30 3.3.1 水-循環系統一.………………………………….30 3.3.2 水-循環系統二.………………………………….33 3.4 空氣循環系統…...……………………….…………..34 3.5 水-系統一實驗過程..…………………….…………..36 3.5.1 系統測漏…………………………………………36 3.5.2 填充流體…………………………………………37 3.5.3 實驗步驟…..…….…..…………………………..37 3.6 水-系統二實驗過程..…………………….…………..38 3.6.1 實驗步驟…..…….…..…………………………..38 3.7 空氣系統實驗過程..…………………….……………38 3.7.1 系統測漏…………………………………………38 3.7.2 實驗步驟……………..…………………………..39 3.8 工作流體的物理性質….……………………………..39 3.9 實驗數據分析…………………………………………39 3.9.1 壓降分析……………..…………………………..40 第四章 實驗結果與討論…………………………………….…53 4.1 次要損失…..………………………………..………….53 4.2 層流-紊流轉換區…..………………………….……….56 4.3 水與空氣管內摩擦係數……………………………….57 4.4 水與空氣之比較……………………………………….58 4.5 利用摩擦壓降比較與預測熱傳………………………60 第五章 結論…………………………………………………….81 參考文獻…………………………………………………………83 附錄………………………………………………………………89 表目錄 表2.1 微小管之摩擦係數-圓管…………………………….. 21 表2.2 微小管之摩擦係數-非圓管…………………………. 22 表2.3 平滑管內的熱傳係數 ………………………………… 23 表2.4 微小管之熱傳係數─圓管…...……………………….. 24 表2.5 微小管之熱傳係數─非圓管……...………………….. 25 表3.1 測試管相關尺寸表……………………...…………….. 42 表3.2 空氣在溫度25℃及水在40℃的熱力性質表….…. 43 表3.3 水-實驗設備一誤差表………………………………… 43 表3.4 水-實驗設備二誤差表………………………………… 44 表3.5 空氣實驗設備誤差表………………………………….. 44 表3.6 水實驗系統的實驗參數誤差表……………………….. 45 表3.7 空氣實驗系統的實驗參數誤差表…………………….. 45 表4.1 空氣在0.173mm各次要損失與量測壓降之比值...…. 62 圖目錄 圖2.1 各壓降關係式之比較圖……..…………………………26 圖2.2 管流摩擦係數之Moody chart …………………………27 圖2.3 各熱傳關係式比較圖…………..………………………28 圖3.1 水-實驗系統一平面圖………………………………….46 圖3.2 水-實驗系統二平面圖………………………………….47 圖3.3 空氣-實驗系統平面圖…………………….……………. 48 圖3.4 出口RTD的校正曲線圖...…………………………….49 圖3.5 差壓計的校正曲線圖.…….………………………….… 50 圖3.6 水流量計的校正曲線圖………………………………..51 圖3.7 壓力轉換器校正曲線圖………………………………..52 圖4.1 水在4.01mm管內摩擦因子對雷諾數的關係圖…….63 圖4.2 水在0.798mm管內摩擦因子對雷諾數的關係圖……64 圖4.3 空氣在1.80mm管內摩擦因子對雷諾數的關係圖…..65 圖4.4 空氣在0.798mm管內摩擦因子對雷諾數的關係圖…66 圖4.5 空氣在0.278mm管內摩擦因子對雷諾數的關係圖...67 圖4.6 一般化壓縮性圖…………………………………………68 圖4.7 水在八種管內壓力梯度對雷諾數的關係圖………….69 圖4.8 空氣在十一種管內壓力梯度對雷諾數的關係圖…….70 圖4.9 為水在八種管內摩擦係數與Poiseuille''s law(2-3)式, Blasius(2-4)方程式以及Filonenko(2-8)關係式預 測值的比較圖….……………………………………….71 圖4.10空氣在0.435mm管內摩擦因子對雷諾數的關係圖…72 圖4.11 空氣在0.278mm管內摩擦因子對雷諾數的關係圖.. 73 圖4.12 空氣在0.217mm管內摩擦因子對雷諾數的關係圖.. 74 圖4.13 空氣在0.173mm管內摩擦因子對雷諾數的關係圖..75 圖4.14 空氣在十一種管內摩擦係數與Poiseuille''s law(2-3) 式,Blasius(2-4)方程式以及Filonenko(2-8)關係 式預測值的比較圖…………………………………….76 圖4.15水與空氣在管徑4.01mm摩擦因子對雷諾數比較圖77 圖4.16水與空氣在管徑0.798mm摩擦因子對雷諾數比較圖78 圖4.17水與空氣在管徑4.01mm與0.798mm中壓力梯度對 雷諾數之比較……………………………………………79 圖4.18 水在五種管徑的紐賽數與各關係式之比較圖……... 80

    參考文獻
    Churchill, S. W., 1977, "Friction-Factor Equation Spans All Fluid Flow Regimes," Chemical Engineering, pp. 91-92.
    Churchill, S. W., 1977, "Friction-Factor Equation Spans All Fluid Flow Regimes," Chemical Engineering, pp. 91-92.
    Filonenko, G., 1954, "Hydraulic Resistance in Pipes," Teplonergetika, Vol. 1, pp. 40-44.
    Gnielinski, V., 1976, "New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow," International Chemical Engineering, Vol. 16, pp. 359-368.
    Haaland, S. E., 1983, " Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow," Journal of Fluids Engineering, ASME, Vol. 105, pp. 89-90.
    Kakac, S., Shah, R. K., and Aung, W., 1987, Handbook of Single-phase Convective Heat Transfer, Wiley, New York.
    Mala, Gh. Mohiuddin and Li, Dongqing 1999, "Flow characteristics of water in microtube," International Journal of Heat and Fluid Flow, Vol. 20, pp. 142-148.
    Moody, L. F., 1944, "Friction Factors for Pipe Flow," Transactions of the ASME, Vol. 66, pp. 671-684.
    Moody, L. F., 1944, "Friction Factors for Pipe Flow," Transactions of the ASME, Vol. 66, pp. 671-684.
    Moody, L. F., 1944, "Friction Factors for Pipe Flow," Transactions of the ASME, Vol. 66, pp. 671-684.
    Moody, L. F., 1944, "Friction Factors for Pipe Flow," Transactions of the ASME, Vol. 66, pp. 671-684.
    Moody, L. F., 1944, "Friction Factors for Pipe Flow," Transactions of the ASME, Vol. 66, pp. 671-684.
    Moody, L. F., 1944, "Friction Factors for Pipe Flow," Transactions of the ASME, Vol. 66, pp. 671-684.
    Moody, L. F., 1944, "Friction Factors for Pipe Flow," Transactions of the ASME, Vol. 66, pp. 671-684.
    Sieder, E. N. and Tate, G. E., 1936, "Heat Transfer and Pressure Drop of Liquids in Tubes," Ind. Eng. Chem., Vol. 28, No. 12, pp. 1429-1436.
    Sieder, E. N. and Tate, G. E., 1936, "Heat Transfer and Pressure Drop of Liquids in Tubes," Ind. Eng. Chem., Vol. 28, No. 12, pp. 1429-1436.
    Sieder, E. N. and Tate, G. E., 1936, "Heat Transfer and Pressure Drop of Liquids in Tubes," Ind. Eng. Chem., Vol. 28, No. 12, pp. 1429-1436.
    Sieder, E. N. and Tate, G. E., 1936, "Heat Transfer and Pressure Drop of Liquids in Tubes," Ind. Eng. Chem., Vol. 28, No. 12, pp. 1429-1436.
    Sieder, E. N. and Tate, G. E., 1936, "Heat Transfer and Pressure Drop of Liquids in Tubes," Ind. Eng. Chem., Vol. 28, No. 12, pp. 1429-1436.
    Sieder, E. N. and Tate, G. E., 1936, "Heat Transfer and Pressure Drop of Liquids in Tubes," Ind. Eng. Chem., Vol. 28, No. 12, pp. 1429-1436.
    Sieder, E. N. and Tate, G. E., 1936, "Heat Transfer and Pressure Drop of Liquids in Tubes," Ind. Eng. Chem., Vol. 28, No. 12, pp. 1429-1436.
    Wu, P., and Little, W.A., 1983, "Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thomson Refrigerators," Cryogenics, pp. 273-277.
    Wu, P., and Little, W.A., 1983, "Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thomson Refrigerators," Cryogenics, pp. 273-277.
    Xu, B., Ooi, K.T., Wong, N. T., and Liu, C. Y., 1999, "Liquid flow in microchannels,"ASME/JSME Joint Thermal Engineering Conference, PP.6214-6220.
    Xu, B., Ooi, K.T., Wong, N. T., and Liu, C. Y., 1999, "Liquid flow in microchannels,"ASME/JSME Joint Thermal Engineering Conference, PP.6214-6220.
    Xu, B., Ooi, K.T., Wong, N. T., and Liu, C. Y., 1999, "Liquid flow in microchannels,"ASME/JSME Joint Thermal Engineering Conference, PP.6214-6220.
    Xu, B., Ooi, K.T., Wong, N. T., and Liu, C. Y., 1999, "Liquid flow in microchannels,"ASME/JSME Joint Thermal Engineering Conference, PP.6214-6220.
    Xu, B., Ooi, K.T., Wong, N. T., and Liu, C. Y., 1999, "Liquid flow in microchannels,"ASME/JSME Joint Thermal Engineering Conference, PP.6214-6220.
    簡欣堂, 1999, "水與液態冷媒在小管內之單相熱傳及壓降實驗分析,"碩士論文, 中央大學

    QR CODE
    :::