跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡應強
Ying-Chiang Hu
論文名稱: 覆晶接點與錫電路之電遷移微結構變化模式研究
Electromigration Induced Microstructure change in Flip Chip Solders Joint and Tin Stripe
指導教授: 高振宏
C. R. Kao
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 107
中文關鍵詞: 固態擴散微結構電遷移錫電路銲料
外文關鍵詞: solid state diffusion, Microstructure, Tin stripe, electromigration, solder
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    電遷移效應對金屬導線的影響,一直被人們重視,近年來由於半導體與微機電工業之興起,大電流對微細化電路之影響,顯得特別重要,本文針對微細之錫導線與覆晶式共晶錫鉛接點在常溫下(30oC)與高溫下(100oC,70 oC)通入電流密度4


    Abstract
    The electromigration failure mechanism in conducting wire and solder joints through the large current density was studied in detail. When environmental temperature was changed to room temperature, 70 oC and 100oC with a nominal current density of 4

    目次 摘要…………………………………………………………………I 目次…………………………………………………………………III 圖目錄………………………………………………………………VI 表目錄………………………………………………………………XIII 研究動機……………………………………………………………1 第一章、緒論………………….…………………………………2 第二章、文獻回顧…………………………………………………5 2.1 何為產生電遷移現象…………………………………………5 2.1.1電遷移的研究方法……………………………………………5 2.1.2電遷移的研究歷史……………………………………………6 2.1.3電遷移的理論模式……………………………………………8 (a) 純金屬的電遷移模式…………………………………………9 (b) 合金及摻雜他種元素的電遷移………………………………13 (c) 錫鉛合金電遷移模式………………………………………15 2.1.4 溫度與電子風效應產生原子移動反轉現象………………24 2.2 電遷移之活化能估算…………………………………………25 2.3 尺度對電遷移影響……………………………………………28 2.4 Current Crowing現象………………………………………29 2.5 高電流密度下導線電阻之變化………………………………33 2.6 電遷移的可靠度推算…………………………………………34 2.7 熱遷移現象……………………………………………………35 2.8 電遷移對界面反應之影響……………………………………37 2.9 錫鬚成長………………………………………………………39 第三章、研究方法……………………………………………………40 3.1 覆晶型樣品製備……………………………………………40 3.1.1 DCA基板製作…………………………………………………40 3.1.2 覆晶式晶片製作……………………………………………43 3.1.3 測試模組之接合……………………………………………48 3.2 錫薄膜樣品製備……………………………………………50 3.2.1 電遷移試片製作……………………………………………52 3.3 錫膜線路通電實驗.………………………………………54 3.3.1 計算面積與電流密度………………………………………54 3.3.2 熱處理實驗…………………………………………………55 3.3.3 試片分析………………………..…………………………55 3.4 覆晶模組結構確認………………………………………55 3.4.1 晶片端之實驗結構………………………………………56 3.4.2 基板端之實驗結構………………………………………58 3.5 通電試驗…………………………………………………58 3.5.1 整顆覆晶模組通電實驗…………………………………59 3.5.2 半顆覆晶銲點即時觀察通電實驗………………………60 3.6 測試模組的溫度測量……………………………………61 3.6.1 熱流計法測量溫度分佈…………………………………61 3.7 金相分析…………………………………………………62 第四章、錫電路之電遷移研究……………………………………63 4.1 純錫電路之電遷移研究………………………………………63 4.1.1 較長尺寸之通電結果………….…………………………65 4.1.2 較長尺寸100 oC下之通電結果……………………………68 4.1.3 較短尺寸下之通電結果……………………………………68 4.2 純錫線路之熱處理實驗結果…………….………………77 4.3 晶格結構之變化……………………………………………80 4.4 純錫線路部分結果與討論.………………………………81 4.5 錫電路研究結論………………………………………….83 第五章、覆晶模組之電遷移研究……………………………….87 5.1 100oC溫度條件實驗結果.………………………………88 5.2 70oC溫度條件實驗結果….………………………………90 5.3 模組中的熱遷移…………………………………………92 5.4 即時(In-situ)觀察電遷移……………………………94 5.5 覆晶模組之電遷移討論………………………………97 5.6 覆晶模組之電遷移結論…………………………………98 第六章、總結論…………….…………………………………100 Refence

    Reference
    1. Alberd T Wu, K. N. Tu, J. R. Lloyd, N. Tamura, B. C. Valek, and C. R. Kao, J. Appl. Phys. 85, p2490, 2004.
    2. Y. C. Hu, Y. H. Lin, C. R. Kao, and, K. N. Tu, J. Mater. Res. 18, p2544 , 2003.
    3. J. R. Black, IEEE Trans. On Electron Devices, ED-16, p348, 1969.
    4. J. R. Lloyed. R. H. Koch, Appl. Phys. Lett., Vol. 52, p194, 1988
    5. Norman G. Einspruch, VLSI Electronics Microstructure Science, Volume 15. Academic, New Yorh, Chapter 8, 1987.
    6. H. Onoda, M. Kageyama. Y. Tatara and Y. Fukuda, IEEE trans. On Electron Devices, ED40, p1614, 1993.
    7. H. Onoda, M. Kageyama and K. Hashimoto, J. Appl. Phys., Vol.77, p885, 1996.
    8. J. O. Olowolafe, H. kawasaki, C. C. Lee, J. Klein, F. Pintchovski and D. Jawarani, Appl, Phys. Lett., Vol62, p2445, 1993.
    9. J. Wada, K. Suguro, N. Hayasaka and H. okano, Jpn. J. appal. Phys. Vol32, p 3094, 1993.
    10. C. K. Hu, M. B. Small, K. P. Robell, C. Stanis, P. Blauner and P. S. Ho, Appl. Phys. Lett., Vol.62, pp1023, 1993.
    11. M. Y. Hsieh and H. B. Huntington, Journal of Physical and Chemistry of Solids, Vol. 39, p861, 1978.
    12. A. N. Campbell, R. E. Mikawa and D. B. Knorr, Jounal of Electronic Materials, Vol.22, pp589, 1992.
    13. H. Yamamoto, S. Fujii, T. Kakiuchi, K. Yano and T. Fujita, in technical Digest of 1987 Int. Electron Devices Meet., IEEE, p207.
    14. Black. J. R., Proc. 6th ann Int Rel, Phys symp., p9148, 1967.
    15. H.B.Humtington, “Diffusion in solids: Recent Development”, edited by A. S. Nowick and J. J. Burton, Academic Press, New York, p303, 1975.
    16. H.B.Humtington and A.R.Grone, Journal of physics and Chemical of solids, Vol.20, p76,1961.
    17. V.B. Fiks, Soviet physics- Solid State, Vol. 1, p14, 1959.
    18. J. P. Dekker and A. Lodder, Journal of Applied Physics, Vol 84, No. 4, p1958, 1998
    19. W. Kohn and N. Rostoker, Phys. Rev. 94, P1111, 1954.
    20. B.N. Agarwala, “Dependence of Electro-migration Induced Failure Time on length and Width of Aluminum Thin Film Conductor”, JAP-41, p3965, 1970.
    21. Y.C. Joo. S. P., Earzt, ACTA. Mater., Vol 46, No.6, p1964, 1998.
    22. J. H. Lau, Low Cost Flip Chip Technologies, (McGraw-Hill, N. Y., 2000) p14.
    23. S. Brandenburg and S. Yeh, Surface Mount International Conference and Exposition, SMI 98 Proceedings, p337, 1998.
    24. H.U.Schreiber, Solder-state Electronices, Vol 24, p585, 1985.
    25. J. Shi and H. B. Huntington, Journal of Physical and Chemistry of Solids, Vol. 48, p693, 1978.
    26. H. Nakajima and H. B. Huntington, Journal of Physical and Chemistry of Solids, Vol. 42, p171, 1981.
    27. H.B.Humtington, C. K. Hu, S. N. Mei, in “Diffusion in solids: Recent Developments”, edited by M. A. Dayanada and G. E. Murch, TMS, Warrendale, PA, p97, 1984
    28. F. H. Huang and H. B. Huntington, Physical Review B, Vol 9, No.4, p1479, 1974.
    29. C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, Appl. Phys. Lett. 75, p 58, 1999.
    30. 曾偉志著『多層組內連線中的電遷移及應力遷移現象』,電子月刊,第二卷第六期,p80,1996。
    31. A. Christou, Electromigration and electronic device degradation(Wiley), Ch. 2, 1994.
    32. J R Lloyd, J. Phys. D: Appl. Phys. 32 , p109, 1999.
    33. C. Y. Liu, Chih Chen, and K. N. Tu, J. Appl. Phys., 88, November, p5703, 2000.
    34. T. Y. Lee, and K. N. Tu, J. Appl. Phys., 89(6), March, p3189, 2001.
    35. Q. T. Huynh, C. Y. Liu, Chih Chen, and K. N. Tu, J. Appl. Phys., Vol. 89, April, p4332, 2001.
    36. V. N. Pimenov, K. P. Gurov, K. I. Khurdyakov, S. S. Dol’nikov, R. A. Milievskii, V. S. Hhlomov, and Yu, G. Miller, Fiz. Khim. Obrabotki Materialov, Vol 1, p107, 1978.
    37. M. Braunovic and N. Alexandrov, IEEE Transactions on Components, Packaging and Manufacturing Technology –part A, Vol. 17(1), p 78, 1994
    38. W. C. Liu, S. W. Chen and C. M. Chen, Journal of Electronic Materials, Vol. 27(1), p15, 1998.
    39. N. Bertolino, J. Garay and Z. A. Munir, Scripta Materialia, Vol. 44, p737, 2001.
    40. W. Roush and J. Jaspal, Proceedings of the Electron. Compon. 32nd Conference, San Diego, CA, p342, 1982.
    41. C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, Appl. Phys. Lett. 75, p58, 1999.
    42. C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys. 88, p5703, 2000.
    43. Yongsunthon, A. Stanishevsky, J. McCoy and E. D. Williams, Appl. Phys. Lett. 78, p2661, 2001.
    44. K. N. Tu, C. C. Yeh, C. Y. Liu and Chih Chen, Appl. Phys. Lett. 76, p988, 2000.
    45. I. A. Blech and C. Herring, Appl. Phys. Lett. 29, p131, 1976R.
    46. E. C. C. Yeh, W. J. Choi, K. N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Letts. 80, p580, 2002.
    47. K. Zeng and K. N. Tu, Mater. Sci. & Eng. R 38, p55, 2002.
    48. J. D. Wu, P. J. Zheng, K. Lee, C. T. Chiu, and J. J. Lee, Proceedings of the 2002
    49. Electronic Components and Technology Conference ,IEEE, NY, p452, 2002.
    50. J. H. Zhao, Electromigration and Electronic Device Degradation, Wiley, p 171, 1994.
    51. J. N. Pratt and R. G. R. Sellors, in “ Diffusion and Defect Monograhh Series No.2: Electrotransport in Metal and Alloys”, edited by Y. Adda, A. D. Le claire, L. M. Slifkin, and F. H. Wohlbier, Trans Tech SA, Riehen, Switzerland.
    52. 84. J. R. Black, Proceedings of The IEEE, Vol 57, p1587, 1969.
    53. K. N. Tu, J. Appl. Phys. 94, p5451, 2003.
    54. H. Ye, C. Basaran, and D. Hopkins, Appl. Phys. Lett. 82, p1045, 2003.
    55. H. Ye, C. Basaran, and D. Hopkins, Int. J. Solids Struct. 40, p4021, 2003.
    56. H. Ye, C. Basaran, and D. Hopkins, Int. J. Solids Struct. 40, p7269, 2003.
    57. W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys. 94, p5665, 2003.
    58. J. W. Nah, K. W. Paik, J. O. Suh, and K. N. Tu, J. Appl. Phys. 94, p7560, 2003.
    59. Y. C. Hsu, T. L. Shao, C. J. Yang, and C. Chen, J. Electron. Mater. 32, p1222, 2003.
    60. T. L. Shao, K. C. Lin, and C. Chen, J. Electron. Mater. 32, p1278, 2003.
    61. K. Jung and H. Conrad, J. Mater. Sci. 39, p1803, 2004.
    62. Y. H. Lin, C. M. Tsai, Y. C. Hu, Y. L. Lin, and C. R. Kao, J. Electron. Mater., in press.
    63. K. N. Tu, J. Appl. Phys. 94, p5451, 2003.
    64. C. M. Tsai, W. C. Luo, C. W. Chang, Y. C. Shieh, and C. R. Kao, J. Electron. Mater., in press.
    65. D.G. Pierce, P.G. Brusius, Microelectron Retab, vol37, No.7, p1053, 1997.
    66. Shatzkes. M, Lloyd. J.R., J. Appl. Phys, 59(11), p3890, 1986.
    67. D. A. Golopentia and H. B. Huntington, Journal of Physical and Chemistry of Solids, Vol. 39, p975, 1978.
    68. J. R. Lloyd, J. Appl. Phys. 94(10) p6483, 2003.
    69. E. G. Liniger, C. -K. Hu, L. M. Gignac, and A. Simon, J. Appl. Phys. 93(12) p9576, 2003.
    70. Hua Ye, Cemal Basaran, and Douglas Hopkins ., Appl. Phys. Lett. 82(7) p1045, 2003.
    71. R. G. Filippi, R. A. Wachnik, C.-P. Eng, D. Chidambarrao, P.-C. Wang, J. F. White, M. A. Korhonen, T. M. Shaw, R. Rosenberg, and T. D. Sullivan ., J. Appl. Phys. 91(9) p5787, 2002.
    72. J. R. Lloyd , AIP Conf. Proc. 612(1), p3 , 2002.
    73. Akitomo Tachibana , AIP Conf. Proc. 612(1) , p105 , 2002.
    74. Everett C. C. Yeh, W. J. Choi, K. N. Tu, Peter Elenius, and Haluk Balkan , Appl. Phys. Lett. 80(4), p580, 2002.
    75. J. R. Lloyd , Appl. Phys. Lett. 79(7), p1061, 2001.
    76. Nancy L. Michael and Choong-Un Kim, J. Appl. Phys. 90(9), p4370, 2001.
    77. Everett C. C. Yeh and K. N. Tu , J. Appl. Phys. 89(6), p3203, 2001.
    78. Q. T. Huynh, C. Y. Liu, Chih Chen, and K. N. Tu , J. Appl. Phys. 89(8) p4332 , 2001.
    79. Choong-Un Kim, N. L. Michael, Qing-Tang Jiang, and Rod Augur , Rev. Sci. Instrum. 72(10), p3962, 2001.
    80. C. Y. Liu, “Reliability of Solder Joints in Flip Chip Technology: Approaches from Fundamental Studies of Wetting, Interfacial reaction, Mechanical shear testing, and Electromigration”, Ph.D. Thesis, University of California, Los angeles, 2000.
    81. C. Y. Chang, S. M. Sze, ULSI Technology, the McGRAW-HILL, P663, 1996.

    QR CODE
    :::