| 研究生: |
陳長煦 Chang - hsu |
|---|---|
| 論文名稱: |
雙足機器人的動作進化設計與實現 Evolution motion design and implementation in humanoid robot |
| 指導教授: |
王文俊
Wen - june Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 雙足機器人 、平衡控制器 、感測模組 、影像辨識 |
| 外文關鍵詞: | Image processing, sensor module, Balance control, Biped robot |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目標在於設計及製作出一台具有強健平衡功能的雙足機器人。首先,我們製作出第一代機器人,並利用機器人多連桿系統與COP 平衡之概念,設計出「姿態平衡控制器」,藉此使用者只需輸入機器人的「初始」及「目標」兩筆動作矩陣至控制器內,控制器就會透過內插法、COP 穩定判斷與腳踝修正機制,將不穩定的動作矩陣調整為穩定動作軌跡,減輕使用者設計動作的負擔。第一代機器人能平穩的執行舉手、踢腳、鞠躬、蹲下及行走等動作。接著,我們將第一代機器人做硬體及控制器的改良,完成了第二代機器人。硬體架構上增加多維度腰部機構,讓機器人能以更多元之方式調整姿態、適應環境,接著運用空間感測器偵測地面傾斜程度,並搭配模糊控制器的即時運算,修正機器人在斜坡上的不穩定姿態,再以影像處理技術進行目標物辨識、追蹤與射擊。基於以上,第二代機器人能夠穩定執行舉重、抓取單槓且平移、斜坡行走平衡與瞄準射擊氣球等任務,充分表現出機器人在平衡上的強健性,與影像處理的高辨識率。最後由實驗數據分析證明,腰部機構與模糊控制器對於機器人平衡姿態,具有極佳的貢獻。
The objective of this study is to design and fabricate a robust balance biped robot. First, the “first generation humanoid biped robot” is constructed, and then the “balance controller” is designed by using the multi-link system and the COP concept. The users just input the initial state and final state motion matrices into the controller, based on the linear interpolation, COP concept, and ankle modification method, the motion matrices can be adjusted to a stable motions trajectory such that the humanoid robot can do the motion trajectory and keep balance all the time. The first generation humanoid robot can stably perform the motions such as raising hand, kicking, bowing, squatting, and walking. Subsequently, the second generation humanoid robot is accomplished by improving the hardware and controller of the first generation humanoid robot. Three degrees of freedom (DOF) motors are set at the waist, inertial measurement unit (IMU) and the fuzzy controller are employed to make the robot adjust its posture and then stably stand on the slope platform. Furthermore, this robot has image processing function to recognize, track, and shoot the target. In summary the second generation humanoid robot can accomplish the motions such as weightlifting, grabing horizontal bar, walking on the slope platform and shooting target, which show the effectiveness of robust balance control and image recognition. Finally, the experimental result data show that the waist structure and fuzzy controller can help the humanoid robot to keep balance obviously.
[1] T. Matsumoto, A. Konno, L. Gou, and M. Uchiyama, “A humanoid robot that breaks wooden boards applying impulsive force,” in Proc. IEEE Int. Conf. Intell. Robot. Syst., China, Oct. 2006, pp. 5919-5924.
[2] HONDA ASIMO首頁,
http://asimo.honda.com/,2011年3月10號。
[3] Sony AIBO Europe首頁,http://www.sony.co.uk/support/en/hub/ERS,2011年3月10號。
[4] ALDEBARAN首頁,
http://www.aldebaran-robotics.com,2011年3月10號。
[5] Sony Global首頁,http://www.sony.net/SonyInfo/News/Press_Archive/200312/03-060E,
2011年3月10號。
[6] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi, “Humanoid robot HRP-3,” in Proc. IEEE Int. Conf. Intell. Robot. Syst., Nice, France, Sept. 2008, pp. 2471-2478.
[7] T. Takubo, K. Inoue, T. Arai, and K. Nishii, “Wholebody teleoperation for humanoid robot by marionette system,” in Proc. IEEE Int. Conf. Intell. Robot. Syst., Beijing, China, Oct. 2006, pp. 4459-4465.
[8] J. Or, “A hybrid CPG–ZMP controller for the real-time balance of a simulated flexible spine humanoid robot,” IEEE Trans. Syst. Man. Cybern. Part C-Appl. Rev., vol. 39, pp. 547–561, Sept. 2009.
[9] J. H. Park, “Foot and body control of biped robots to walk on irregularly otruded uneven surfaces,” IEEE Trans. Syst. Man. Cybern. Part B- Cybern., vol. 39, pp. 289–297, Feb. 2009.
[10] F. Ali, A. C. Amran, and A. Kawamura, “Slope-walking of a biped robot with position and orientation based inverse kinematics method,” in Proc. IEEE Int. Conf. Control Autom. Syst., Yokohama, Japan, Oct. 2010, pp. 1724-1728.
[11] M. Matsumoto and S. Hashimoto, “Haptic sensing foot system for humanoid robot and ground reCOPnition with one-leg balance,” IEEE Trans. Ind. Electron., vol. 55, pp. 3174–3186, Aug. 2011.
[12] K. Suwanratchatamanee, M. Matsumoto, and S. Hashimoto, “Balance control of robot and human-robot interaction with haptic sensing foots,” in Proc. IEEE Int. Conf. Hum. Syst. Interact., Tokyo, Japan, May. 2009, pp. 68-74.
[13] K. C. Choi, H. J. Lee, and M. C Lee, “Fuzzy posture control for biped walking robot based on force sensor for ZMP,” in Proc. IEEE Int. Conf. SICE-ICASE., Busan, Korea, Oct. 2006, pp. 1185-1189.
[14] S. H. Hwang, H. J. Kwak, and G. T. Park, “Stable walking of humanoid robot by using landing control in various environments,” in Proc. IEEE Int. Conf. Control. Autom. Syst., Korea, Oct. 2007, pp. 1929-1932.
[15] N. Kaewlek and T. Maneewarn, “Inclined plane walking compensation for a humanoid robot,” in Proc. IEEE Int. Conf. Control. Autom. Syst., Gyeonggi-do, Korea, Oct. 2010, pp. 27-30.
[16] S. J. Yi, B. T. Zhang, D. Hong, and D. D. Lee, “Practical bipedal walking control on uneven terrain using surface learning and push recovery,” in Proc. IEEE Int. Conf. Intell. Robot. Syst., San Franclsco, USA, Sept. 2011, pp. 3963-3968.
[17] K. Hashimoto, T. Hosobata, Y. Sugahara, Y. Mikuriya, H. Sunazuka, and M. Kawase, “Development of foot system of biped walking robot capable of maintaining four-point contact,” in Proc. IEEE Int. Conf. Intell. Robot. Syst., Tokyo, Japan, Aug. 2005, pp. 1361-1366.
[18] J. C. Wang, Y. T. Lin, H.T. Jheng, J. S. Wu, and R. Jhe, “Object tracking for autonomous biped robot,” in Proc. IEEE Int. Conf. Intell. Control. Autom., Jinan, China, July. 2010, pp. 1782-1789.
[19] S. Ushida, K. Yoshimi, T. Okatani, and K. Deguchi, “The importance of gaze control mechanism on vision-based motion control of a biped robot,” in Proc. IEEE Int. Conf. Tell. Robot. Syst., Beijing, China, Oct. 2006, pp. 4447-4452.
[20] B. S. Kim, K. M. Nam, J. J. Kim, and S. G. Lee, “Research for gait stability of biped walking using vision,” in Proc. IEEE Int. Conf. Control. Autom. Syst., Korea, Oct. 2010, pp. 1414-1418.
[21] 張哲瀚 (王文俊 教授指導),雙足機器人之強健穩定控制,國立中央大學電機工程研究所碩士論文,2011年7月。
[22] 繆紹綱譯,數位影像處理,普林斯頓國際有限公司,2004年
[23] H. Y. Liu, W. J. Wang, and R. J. Wang, “A course in simulation and demonstration of humanoid robot motion,” IEEE Trans. Educ., vol. 54, pp. 255-262, May 2011.
[24] R. A. Cooper, D. P. Vansickle, R. N. Robertson, M. L. Boninger, and G. J. Ensminger, “A method for analyzing center of pressure during manual wheelchair propulsion,” IEEE Trans. Rehabil. Eng., vol. 3, pp. 289-298, Dec. 1995.
[25] 王文俊,認識Fuzzy-第三版,全華科技圖書股份有限公司,2008年6月。
[26] Arduino.TW首頁,
http://arduino.tw/introprograming.html,2011年11月15號。
[27] Android 教學|孫傳雄研究室,
http://in.gururu.tw/,2011年11月15號。
[28] RoBoard 首頁,
http://www.roboard.com/,2011年12月15號。