| 研究生: |
范峻勝 Chun-sheng Fan |
|---|---|
| 論文名稱: |
探討pH 對Lactobacillus kefiranofaciens產胞外多醣及乳 The effect of pH value on the production of the exopolysaccharide and lactic acid by Lactobacillus kefiranofaciens |
| 指導教授: |
徐敬衡
Chin-hang Shu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 乳酸 、胞外多醣 、酸鹼值 、乳酸菌 |
| 外文關鍵詞: | pH, exopolysaccharide, lactic acid, Lactobacillus kefiranofaciens |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Lactobacillus kefiranofaciens所生產的胞外多醣是一種水溶性的多醣,名為克弗蘭多醣(Kefiran),因為結構與其他物理、化學性質特殊,將可以廣泛的被應用於食品、醫藥工業方面。
本研究目的在探討不同在pH 值下液態發酵培養對乳酸菌L.
kefiranofaciens生產胞外多醣及乳酸之影響,與產生之多醣生物活性的影響。
實驗結果發現控制pH 5.5時,最有利於菌體的生長,不論是單位基
值對菌體轉化率Y(x/s)或比生長速率(μ)都是最高的,分別為104 mg/g及0.063 1/hr;而控制pH 5的時候最有利於胞外多醣的生成,單位基質及單位菌體的多醣產率分別為19.4 mg/g及195 mg/g。而在乳酸轉化率方面,發現低pH值有助於乳酸的產生。
在克弗蘭多醣的生物活性測定上,在不同初始pH之血清瓶實驗中,
發現多醣活性並沒有差異,可能是由於分子量並無明顯差異;而在控不同pH值發酵槽條件下培養,發現於pH 5的多醣其生物活性最高。發現多醣活性隨著分子量成正比的關係,分子量較大,其生物活性也隨之較高。
Exopolysaccharide(EPS) which is produced by Lactobacillus
kefiranofaciens is a kind of water-soluble
exopolysaccharide, named kefiran.
It is widely applied to food and pharmaceutical industry due to its unique structure and physical, chemical properties.
The purpose of this study is to discuss the impact of fermentation on L. kefiranofaciens when it produce exopolysaccharide and lactic acid under different pH value.
Research has shown that pH 5.5 is the most favorable environment for cell growth, both Y (x / s), which is 104 mg / g, and μ, which is 0.063 1/hr, are the highest. Also, pH 5 is most favorable for the formation of EPS, with
Yp/s 19.4 mg/g and Yp/x 195 mg/g and low pH is good for the generation of lactic acid.
With EPS biological activity measuring, no difference was found in TNF released between different initial pH in Serum bottle, no significant difference in Molecular Weight might be the reason. And different pH values
in the fermenter culture conditions, the EPS found in the pH 5 the highest biological activity. Proportional with the molecular weight polysaccharide found in the relationship between activity, molecular weight, the higher the biological activity also followed.
陳慶源,2008,綜論乳酸菌之多元化應用,食品工業,40(9): 1-3。
廖啟成,1998,乳酸菌之分類及應用,食品工業,30(2): 1-10。
蔡英傑,1998,乳酸菌與益生菌,生物產業,9(2): 98-103。
金其榮、張繼民、徐勤,1989,中國,有機酸發酵工藝學,中國輕工業出版社。
郭卿雲,2000,克弗爾菌元生長與克弗蘭生成之研究,國立臺灣大學畜產學研究所,博士論文。
楊政儒,2005,生長溫度與pH值對於乳酸菌胞外多醣生成影響之研究,文化大學生活應用科學研究所,碩士論文。
水野卓和、川合正允,1997,菇類的化學‧生化學,賴慶亮譯,國立編譯館。
朱至、廖鮮豔、紀凱、堵國成、陳堅,2008,中國,「兩階段溫度控制策略提高Lactobacillus kefiranofaciens發酵生產Kefiran」,過程工程學報,8(1): 144-147 頁。
Abbas AK and Lichtman AH 原著,謝文欽編譯,2004,Cellular and molecularimmunology. 5th ed.,合計圖書出版社。
A. H, K. D. 1999. Role of bifidobacteria in nitrition, medicine and technology. Nutr. Res. 19: 1559-197.
Cerekbas A, Yemni E, Ezzedenn F. 1994. Antitumoral antibacterial and antifungal activities of Kefir and Kefir grain. Phytother. Res. 8: 78−82.
Cerning J, Bouillanne C, Landon M, Desmazeaud M. 1992. Isolation and characterization of exopolysaccharides from slime-forming mesophilic lactic acid bacteria. J Dairy Sci. 75: 692-699.
Cheirsilp B, Shimizu H, Shioya S. 2003. Enhanced kefiran production by mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae. Journal of Biotechnology. 100: 43-53.
Chaplin and Kennedy. 1994. Carbohydrate analysis: A practical approach (2nd ed.) IRL Press at Oxford University. Press New York pp. 81-87.
Chonan, O., M. Watanuki. 1995. Effect of galatooligosaccharides on calcium absorption in rats. J. Nutr. Sci. Vit. 41(1): 95-104.
Cross ML, Stevenson LM, Gill HS. 2001. Anti-allergy properties of fermented food: An important immunoregulatory mechanism of lactic acid bacteria. Int Immunopharmacol. 1: 891-901.
Demleitner S, Kraus J, Franz G. 1992. Synthesis and antitumor activity of derivatives of curdlan and lichenan branched at C-6. Carbohydr. Res. 226: 239-246.
Demleitner S, Kraus J, Franz G. 1992. Synthesis and antitumor activity of sulfoalkyl derivatives of curdlan and lichenan. Carbohydr. Res. 226: 247-252.
Gallaher D. and Khil J. 1999. The effect of synbiotics on colon carecinogenesis in rats. J. Nutr. 29: 1483-1487.
Gassem MA, Sims KA, Frank JF. 1997. Exopolysaccharide production from whey lactose by fermentation with Lactobacillus delbrueckii subsp. bulgaricus. J. Food Sci. 62: 171-173.
Goldin BR, Gorbach SL. 1984. The effect of milk and Lactobacillus feeding on human intestinal bacterial enzyme activity. Am J Clin Nutr 39: 756-761.Sutherland, I.W. 1998. Novel and established application of microbial polysaccharides. Tibtech. January. 16: 41-46.
Grobben GJ, Boels IC, Sikkema J, Smith MR, de Bont JAM. 2000. Influence of ions on growth and production of exopolysaccharides by Lactobacillus delbrueckii subsp. bulgaricus NCFB 2772. J. Dairy Res. 67: 131-135.
Heald P. J. and Kristiansen B. 1985. Synthesis of polysaccharide by yeast like forms of Aureobasidium pulluans. Biotechnology and bioengineering. 27: 1516-1519.
Hirayama, K. and Rafter, J. 2000. The role of probiotic bacteria in cancer prevention. Microbes and Infection. 2: 681-686.
Holzapfel, W. H., P. Haberer, R. Geisen, J. Bjorkroth, and U. Schillinger. 2001. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am J Clin Nutr. 73: 365-373.
Larsen, A. G., F. K. Vogensen, and J. Josephsen. 1993. Antimicrobial activity of lactic acid bacteria isolated from sour doughs: purification and characterization of bavaricin A, a bacteriocin produced by Lactobacillus bavaricus MI401. J Appl Bacteriol. 75: 113-22.
Looijesteijn, P. J., Trapet, L., de Vries, E., Abee, T.,Hugenholtz, J. 2001. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int. J. Food Microbiol. 64:71-80.
Maeda H, Zhu X, Mitsuoka T. 2004. Effect of an exopolysaccharide (kefiran) on blood glucose in KKAy mice and constipation in SD rats induce by a low-fiber diet. Bioscience Microflora. 23:149-153.
Maeda H, Zhu X, Omura K, Suzuki S, Kitamura S. 2004. Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. BioFactors. 22: 197-200.
Marshall V, Cole WM. 1984. Methods for marking Kefir and fermented milks based on kefir. J Dairy Res. 52: 451-456.
Marshall VM, Cowie EN, Morerons RS. 1995. Analysis and production of two exopolysaccharides from Lactococcus lactis subsp. cremoris LC330. J. Dairy Res. 62: 621-628.
Medrano M, Fernando P, Graciela A. 2007. Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors. Food Microbiology. 122: 1-7.
Miao Wang, Jie Bi. 2008. Modification of characteristics of kefiran by changing the carbon source of Lactobacillus kefiranofaciens. J. Sci Food Agric. 88: 763-769.
Micheli, L., D. Uccelletti, C. Palleschi, and V. Crescenzi. 1999. Isolation and characterization of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Applied Microbiology Biotechnology. 53: 69-74.
Millet I, Ruddle N H. 1994. Diferential regulation of lymphototoxin (LT), lymphotoxin-β (LT-β), and TNF-α in murine T cell clones activated through the TCR. J. Immunol.152: 4336-4346.
Mozzi, F., De Giori, G. S., Oliver, G. and De Valdez, G. F. 1996. Exopolysaccharide production by Lactobacillus casei in milk under different growth condtion. Milchwissenschaft. 51: 670-673.
Mozzi F, de Giori GS, Oliver G, de Valdez GF. 1995. Exopolysaccharide production by Lactobacillus casei I. Influence of salts. Milchwissenschaft. 50: 186-188.
Mukai T, Toba T, Itoh T, Adachi S. 1988. Structural microhet-erogeneity of kefiran from kefir grain. Jpn J Zootech Sci. 59: 167-176.
Mukai T, Watanabe N, Toba T, Itoh T, Adachi S. 1991. Gel-forming characteristic and rheological properties of kefiran. J Food Sci. 56: 1017-1026.
Mmofoshi M., M. Shiomi, K. Aibara. 1983. Effect of orally administered polysaccharide from kefir grain on delayed-type hypersensitivity and tumor growth in mice. Jpn. J. Med. Sci. Biol. 36: 49.
Mustapha, A., Jiang T. and D. A. Savaiano. 1997. Improvement of lactose digestion byhumans following ingestion of unfermented acidophilus milk: influence of bile sensitivity lactose transport and acid tolerance of actobacillus acidophilus. J. Dairy Sci. 80: 1537-1545.
Ocana, V. S., M. Elena Nader-Macias. 2004. Production of antimicrobial
substances by lactic acid bacteria II: screening bacteriocin-producing strains with probiotic purposes and characterization of a Lactobacillus bacteriocin. Methods Mol Biol. 268: 347-53.
Ohno N, Asada N, Adachi Y, Yadomae T. 1995. Enhancement of LPS triggered TNF-α (tumor necrosis factor-α) production by (1-3)-β-D-glucans in mice. Boil. Pharm. Bull. 18: 126-133.
Ohno N, Miura N, Chiba N, Adachi Y, Yadomae T. 1995. Comparison of the immunopharmacological activities of triple and single-helical schizophyllan in mice. Biol. Pharm. Bull. 18: 1242-1247.
Okai Y, Okai KH, Ishizaka S, Yamashita U. 1997. Enhancing effect of polysaccharides from an edible brown alga, Hijikia fusiforme (Hijiki), on release of tumor necrosis factor-α from macrophages of endotoxin-nonresponder C3H/HeJ mice. Nutr. Cancer. 27(1): 74-79.
Pantev, A., R. Valcheva, S. Danova, I. Ivanova, I. Minkov, T. Haertle, and J. M. Chobert. 2003. Effect of enterococcin A 2000 on biological and synthetic phospholipid membranes. Int J Food Microbiol. 80: 145-152.
Rossland, E., T. Langsrud, P. E. Granum, and T. Sorhaug. 2005. Production of antimicrobial metabolites by strains of Lactobacillus or Lactococcus co-cultured with Bacillus cereus in milk. Int J Food Microbiol. 98: 193-200.
Ruas-Madiedo P, Hugenholtz J, Zoon P. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J. 12: 163-171.
Sakagami H, Ikeda M, Konno K. 1989. Stimulation of tumor necrosis factor-induced human myelogenous leukemic cell differentiation by high molecular weight PSK subfraction. Biochem. Biophys. res. commun. 162: 597-603.
Sebastiani H, Zelger G. 1998. Texture formation by thermophilic lactic acid bacteria. Milchwisssenschaft. 53: 15-19.
Shiomi, M., K. Sasaki, M. Murofushi, K. Aibara. 1982. Antitnrmor activity in mice of orally administered polysaccharide from kefir grain. Jpn J. Med. Sci. Biol. 35: 75.
Sneath, P. H. A., Mair, N. S., Sharpe, M. E. and Holt, J. G. 1986. Bergey’s manual of systematic bacteriology, Volume 2, William and Wilkins. Baltimore. USA.
Vinderola G, Perdigo G, Duarte J, Farnworth E, Matar C. 2006. Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine. 36: 254-260.
Kojima T, Tobata K, Itoh W, Yanaki T. 1996. Molecular weight dependence of the antitumor activity of schizophyllan. Agric. Biol. Chem. 50: 231-231.
Kooiman P. 1968. The chemical structure of kefiran, the water-soluble polysaccharide of the kefir grain. Carbohydr Res. 7: 200-211.
Kwak, H. S., S. K. Park, and D. S. Kim. 1996. Biostabilization of kefir with a nonlactose-fermenting yeast. J. Dairy Sci. 79: 937-942.
Wang Y, McNeil B. 1995. pH effects on exopolysaccharide and oxlic acid production in cultures of Sclerotium glucanium. Enzyme and Microbial Technology. 17: 124-130.
Wang Y, Ahmed Z, Feng W, Li C, Song S. 2008. Physicochemical properties of exopolysaccharide produce by Lactobacillus Kefiranofaciens ZW3 isolated from Tibet kefir. Biological Macromolecules. 43: 283-288.
Zlsu B, Shah N P. 2003. Effects of pH, temperature, spplementation with wey Protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. J. Dairy Sci. 86: 3405-3415.