| 研究生: |
廖元璋 Yuan-Chang Liao |
|---|---|
| 論文名稱: |
多塔變壓吸附法回收二氧化碳之研究 The Study of Recovering CO2 by Multi-bed Pressure Swing Adsorption |
| 指導教授: |
周正堂
Cheng-Tung Chou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 二氧化碳 、13X沸石 、變壓吸附 、模擬 、實驗設計 、溫室效應 |
| 外文關鍵詞: | pressure swing adsorption, zeolite 13X, carbon dioxide, greenhouse effect, simulation, experiment design |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
溫室效應已對全球氣候造成重大的變遷。因此,如何回收工廠所排放出來的二氧化碳將是解決二氧化碳問題的首要步驟。
本研究是由模擬方式進行三塔式變壓吸附程序的探討。進料為16%CO2和84%N2的混合氣體,吸附劑採用13X沸石,氣體吸附量採Langmuir平衡吸附式,分離機構為平衡模式,忽略吸附塔內的壓降,考慮非恆溫的變壓吸附程序。
以模擬程式探討不同操作參數對產物濃度與回收率的影響,濃縮後的CO2純度可達73%(此時回收率為77%),回收率可達87%(此時純度為70%),並考慮所做的功來計算「實際回收率」,此實際回收率的值會比原本的回收率減少2~5%左右,再利用實驗設計方法找出影響濃度與回收率的重要參數,並建立預測方程式,預測的結果平均誤差約5~8%。
Abstract
The global climate is greatly changed by greenhouse effect. The recovery of CO2 from flue gas is the first important step in solving CO2 problem.
The three-bed pressure swing adsorption (PSA) processes were explored by simulation in this study. The feed gas contains 20% CO2 and 80% N2. The adsorbent is zeolite 13X. The amount of adsorption is calculated by Langmuir isotherm, and this study used the equilibrium model without the consideration of pressure drop. It is also considered non-isothermal operation.
The simulation program has studied the influence of operation parameters. The higher purity of the concentrate CO2 is 73% (the recovery is 77%), and the higher recovery is 87% (the purity is 70%).It is also considered the work of the process to calculate the “actual recovery”. The values of the actual recovery reduce about 2~5% from recovery. The important parameters that affect the purities and recoveries were found by the method of experiment design, and we found the polynomials to predict the results. The average errors of the polynomials are about 5~8%.
參考文獻
1. Berlin, N.H., U.S. Patent 3,280,536, assigned to Esso research and engineering company (1966).
2. Chue, K.T., J.N. Kim, Y.J. Yoo, S.H. Cho and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res.,34(2), 591-598 (1995).
3. Diagne, D., M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, J. Chem. Eng. Jpn., 27(1), 85-89 (1994).
4. Diagne, D., M. Goto and T. Hirose, “Parametric Studies on CO2 Separation and Recovery by a Dual Reflux PSA Process Consisting of Both Rectifying and Stripping Sections ”, Ind. Eng. Chem. Res., 34, 3083-3089 (1995).
5. Diagne, D., M. Goto and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, J. Chem. Tech. Biotechnol., 65, 29-38 (1996).
6. Dong, F., H. Lou, A. Kodama, M. Goto and T. Hirose, “A New Concept in the Design of Pressure-Swing Adsorption Processes for Multicomponent Gas Mixtures”, Ind. Eng. Chem. Res., 38, 233-239 (1999).
7. Doong, S.J. and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AIChE J., 32, 397 (1986).
8. Doong, S.J. and R.T. Yang, “Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AIChE J., 33, 1045 (1987).
9. Farooq, S. and D. M. Ruthven, “A Comparison of linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., 45, 107 (1990).
10. Glueckauf, E. and J.E. Coates, J. Chem. Soc., 1315 (1947)
11. Guerin de Montgareuil, P. and D. Domine, U.S. Patent 3,155,468, to Societe L‘ Air Liquide, Paris (1964).
12. Hassan, M.M., D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on A Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1333 (1986).
13. Hassan, M. M. and N. S. Raghavan, “Pressure Swing Adsorption Air Separation on a Carbon Molecular Seive-II. Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., 42, 2037 (1987).
14. Hwang, K.S. and W.K. Lee, “The Adsorption and Desorption Breakthrough Behavior of Carbon Monoxide and Carbon Dioxide on Activated Carbon. Effect of Total Pressure and Pressure-Dependent Mass Transfer Coefficient”, Separation Science and Technology, 29(14), 1857-1891 (1994).
15. Izumi, J., “Hydrogen Sulifide Removal with Pressure Swing Adsorption from Process Off-Gas” in Fundamentals of Adsorption (Ed. M Suzuki), Kodansha, Tokyo, 293-299 (1992a).
16. Izumi, J., “Process Off-Gas Treatment with Pressure Swing Adsorption”, Proceedings of Symposium on Adsorption Processes, Chung-Li, Taiwan, 71-84 (1992b).
17. Kadlec, R.H. and D.E. Kowler, “ The optimal control of a periodic adsorbed “, AIChE., J.,18,1027 (1972).
18. Kikkinides, E.S. and R.T. Yang, “Simultaneous SO2/NOx Removal and SO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 30(8), 1981-1989 (1991).
19. Kikkinides, E.S. and R.T. Yang, “Gas Seperation and Purification by Polymeric Adsorbents: Flue Gas Desulfurization and SO2 Recovery with Styrenic Polymers”, Ind. Eng. Chem. Res., 32(10), 2365-2372 (1993).
20. Kikkinides, E.S., R.T. Yang and S.H. Cho, “Conceration and Recovery of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 32(11), 2714-2720 (1993).
21. Kikkinides, E.S., V.I. Sikavitsas and R.T. Yang, “Natural Gas Desulfurization by Adsorption: Feasibility and Multiplicity of Cyclic Steady States”, Ind. Eng. Chem. Res., 34, 255-262 (1995).
22. Kim, J.N., K.T. Chue, K.I. Kim, S.H. Cho and J.K. Kim, “Non-Isothermal Adsorpiton of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X ”, J. Chem. Eng. Japan, 27(1), 45-51 (1994).
23. Marsh, W.D., F.S. Pramuk, R.C. Hoke and C.W. Skarstrom, U.S. Patent 3,142,547 to Esso Research and Engineering Company (1964).
24. McCabe, W.L., J.C. Smith and P. Harriott, Unit operations of Chemical Engineering, 325,.406-408, Fourth Edition, McGraw-Hill, Inc (1985).
25. Montgomery, D.C., Design and Analysis of Experiments, Wiley, New York (1997).
26. Nakao, S. and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, 16, 114 (1983).
27. Park J., J. Kim and S. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J., Vol. 46, No.4, 790-802 (2000).
28. Perry, R.H. and D. Green, Perry’s Chemical Engineers’ Handbook, McGraw-Hill Book Company, 3-285 (1984).
29. Pugsley, T.S., F. Berruti and A. Chakma, “Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorption for Recovering Carbon Dioxide from Flue Gases”, Chem. Eng. Sci., 49(22), 4465-4481 (1994).
30. Raghavan, N. S., D. M. Ruthven and M. M. Hassan, “Adsorption and Diffusion of Nitrogen and Oxygen in a Carbon Molecular Sieve”, Chem. Eng. Sci., 41, 1325 (1986).
31. Rege, S.U., R.T. Yang and M.A. Buzanowski, “Sorbents for air prepurification in separation”, Chemical Engineering Science, 55, 4827-4838 (2000).
32. Rubel, A.M. and T.M. Stencel, “ The effect of low concentration SO2 on the adsorption of NO from gas over Activated carbon “, Fuel , Vol 76, Iss 6, 521-526 (1997).
33. Ruthven, D.M., Principles of Adsorption & Adsorption Processes, 209-213, Wiley (1984).
34. Saji, A., Y. Takamura, H. Noda, “Application of PSA to Separation of Carbon-Dioxide from Flue-Gas”, Kagaku Kogaku Ronbunshu, Vol 23, Iss 2, 149-156 (1997).
35. Shendalman, L.H. and J.E. Mitchell, Chem. Eng. Sc., 27, 1449 (1972).
36. Shin, H.S. and K. S. Knabel, “Pressure Swing Adsorption: A Theoretical Study of Diffusion-Induced Separation”, AIChE J., 33, 654 (1987).
37. Sircar, S. and J.W. Zondlo, U.S. Patent 4,013,429 to Air Product and Chemicals, Inc (1977).
38. Siriwardane, R.V., M. Shen, E.P. Fisher and J.A. Poston, “Adsorption of CO2 on Molecular Sieves and Activated Carbon”, Energy & Fuels, 15, 279-284 (2001).
39. Skarstrom, C.W., “Use of adsorption phenomena in automatic plant-type gas analysis”, Ann., NY acad. Sci., 72,751 (1959).
40. Skarstrom, C.W., ” Fractionating gas mixtures by adsorption “, U.S. Patent 2,444,627, assigned to Esso research and engineering company (1960).
41. Takamura, Y., S. Narita, J. Aoki, S. Hironaka and S. Uchida, “Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas”, Separation and Purification Technology, 24, 519-528 (2001).
42. Tamura, T., U.S. Patent 3,797,201, assigned to Tamura, Tokyo, Japan (1974).
43. Turnock, P. H. and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17, 335 (1971).
44. Wagner, J.L., U.S. Patent 3,430,418, to Union Carbide Corporation (1969).
45. Winnick, J., Chemical Engineering Thermodynamics, Wiley, New York, Appendix II (1997).
46. Zhang, W.X., H. Yahiro, N. Mizuno, M. Iwamoto and J. Izumi, “Silver Ion-Exchanged Zeolites as Highly Effective Adsorbents for Removal of NOx by Pressure Swing Adsorption”, Journal of Materials Science Letters, 12, 1197-1198 (1993a).
47. Zhang, W.X., H. Yahiro, N. Mizuno, J. Izumi and M. Iwamoto, “Removal of Nitrogen Monoxide on Copper Ion-Exchanged Zeolites by Pressure Swing Adsorption”, Langmuir, 9(9), 2337-2343 (1993b).
48. Zhang, W., M. Jia, J. Yu and T. Wu, “Adsorption Properties of Nitrogen Monoxide on Silver Ion-Exchanged Zeolites”, Chem. Mater., 11, 920-923 (1999).