| 研究生: |
黃惠卿 Huei-Chin Huang |
|---|---|
| 論文名稱: |
一系列氯/間-羧基吡啶三嗪反應性染料合成和動力學研究及其棉纖維冷軋堆染色應用 Synthesis and kinetic study of a series of chloro/m–carboxypyridium triazinyl reactive dyes and their cold pad-batch cotton dyeing application |
| 指導教授: | 吳春桂 |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 377 |
| 中文關鍵詞: | 氯/間-羧基吡啶 、三嗪反應性染料 、冷軋堆 、棉 |
| 外文關鍵詞: | chloro/m–carboxypyridium, triazinyl reactive dyes, cold pad-batch, cotton |
| 相關次數: | 點閱:29 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究分為兩部分,第一部分為製備5支一氯–s–三嗪反應性染料(mono–chlororizainyl reactive dyes, MCT dyes)和5支間羧基吡啶–三嗪反應性染料(m–carboxypyridium triazinyl reactive dyes, NTR dyes),並進行其水解動力學研究及冷軋捲堆(Cold pad‒batch, CPB)染色應用。此10支染料使用相同紅色色母,藉由改變三嗪環(triazinyl)碳上氮及氧取代基團來改變其反應性,染料結構則使用HPLC、FT-IR、NMR、LC-MASS和E.A.等儀器鑑定。5支NTR紅色染料的水解反應性均比其對應的MCT母體染料高;數據顯示不管是MCT紅色染料、或者是NTR紅色染料的水解常數 (kobs),由高至低的排序均為甲氧基(OCH3) > N–甲基甲基磺酰氨基(N(CH3)SO2CH3) > N–甲基苯胺(N(CH3)phenyl) > 氰氨基(NHCN) > 羥基(-OH)的三嗪環“第二支腳”取代基染料,此趨勢與三嗪環“第二支腳”取代基在鹼性水溶液條件下的電子效應相關,因為-NHCN及-OH取代基上的proton,在pH為10.5的水溶液中解離而帶負電,分別形成-(NCN) ‒及-O‒,帶來較強的推電子效應,使三嗪環電子密度增加而降低反應基的活性,而-OCH3及-N(CH3)SO2CH3取代基屬於強拉電子基團,使得三嗪環反應基活性增加,而N–甲基苯胺(N(CH3)phenyl)取代基則屬於中等的推電子基團,因此反應基的反應性介於中間,此推論也使用Hammett substituent constants( meta)及電腦分子模擬數據來證實。
在CPB的棉纖維染色應用發現,10支紅色染料達到各自最佳染色力度值所需的軋染捲置時間,與該染料kobs數值呈反比,且當MCT染料被Nicotinic acid(Nic)取代後形成的NTR染料,在固著率及染深性有提升,當中以Red 1A(Cl/NHCN)及Red 1B(Nicotinic acid/ NHCN)取代基的染料,染色表現是同類型染料中最優異的。原因是Red 1A及Red 1B的氨腈基團(–CN)屬拉電子基團,在高pH值的CPB染色條件下,NHCN上的proton被部分解離而帶負電荷,此現象一方面能降低三嗪環上反應基的活性(kobs),不容易被鹼性染液中的OH –取代而水解外,-(NCN) ‒帶負電荷且分子結構小,在低水浴、鹼性環境下的CPB染浴下,這類染料預期有較好的溶解度及較高的移動性,使氨腈基團(NHCN) 取代的Red 1A及Red 1B染料在冷軋堆染色(CPB)表現比其他紅色染料好。
第二部的研究是將前述10支紅色染料中染深性及固著率較優異的Nicotinic acid/ NHCN反應基組合導入藍色及橘色染料結構中,探究不同色母對kobs數值及CPB染色應用的影響。結果顯示不同色母的染料結構,對Nicotinic acid/ NHCN反應基的水解常數kobs數值影響不大,但是當與相同色母的傳統型雙反應基(Cl/SES)染料進行冷軋堆的染深性(Build up)比較,Nicotinic acid/ NHCN反應基組合應用於結構較小的色母,例如紅色及橘色染料,能明顯幫助染料在CPB染色力度的提升性,但是若應用在較大色母的藍色染料結構時,則還是以傳統型雙反應基(Cl/SES)藍色染料的染深性較高,此結果再次驗證了CPB染色的染深性,不能單純考慮反應基的kobs數值,還需要考慮染料的分子大小,以及染料在鹼性冷軋堆(Cold pad‒batch)溶液之溶解度等綜合效應。
The content of this thesis is divided into two parts. The first part is the preparation of 5 monochloro–s–triazinyl reactive dyes (MCT dyes) and 5 m–carboxypyridium triazinyl reactive dyes (NTR dyes) which have with the same red chromophore only the substituent groups in trizaine ring are different. The hydrolysis kinetics and cold pad‒batch (CPB) dyeing application of these 10 red reactive dyes were explored and evaluated. The structure of all dyes were characterized by HPLC, FT-IR, NMR, LC-MASS and elemental analysis. The hydrolysis reactivity of the five NTR dyes are all higher than that of the parent MCT dyes. The hydrolysis constant (kobs) of MCT dyes and NTR dyes, from high to low, shows the same order as methoxy (OCH3) > N–methylmethyl sulfonyl (N(CH3)SO2CH3) > N(CH3)phenyl > cyanoamino(NHCN) > hydroxyl (OH) (which are the "second leg" substituents of the triazine dye). The order in hydrolysis reactivity is due to that the proton on -NHCN and -OH substituents is ionized to become negatively charged in the aqueous solution with pH equal to 10.5. The electronic donating effect of -(NCN) ‒ and -O‒ increases the electron density of the triazine ring and reduces the reactivity of the reactive group. The -OCH3 and -N(CH3)SO2CH3 substituents are stronger electron withdrawing groups, which increase the reactivity of the reactive group. While the N(CH3)phenyl substituent is a moderate electron donating group, so the reactivity is higher than -NHCN and -OH substituents but lower compared to -OCH3 and –N(CH3)SO2CH3 substituents. The Hammett substituent constants ( meta) and computational simulation data all support this conclusion.
In the CPB dyeing application, it was found that the optimal batch time to reach the highest dyeing strength (K/S) is negatively correlated with the kobs value of both MCT dyes and NTR dyes. The replacement of chloro by nicotinic acid from MCT dyes to NTR dyes can improve the dye fixation and build up property in CPB dyeing. Red 1A(Cl/NHCN) and Red 1B(Nicotinic acid/NHCN) dyes showed better dyeing performance comparing with the same type of other red dyes, presumably because of the cyanamide group (-NHCN) of Red 1A and Red 1B is an electron withdrawing group. Under high pH condition in CPB dyeing, the proton on -NHCN was partially dissociated. The negatively charged -(NCN)- stabilizes the reactive group in triazinyl ring and slows down the hydrolysis reaction by hydroxide (OH-) in strong alkali dyeing aqueous solution. In addition, the molecular size of NHCN substituent was smaller with negative charge, therefore has better solubility and mobility in an alkali low liquor dyeing bath compared to the other red dyes. These could be the reasons that Red 1A and Red 1B exhibit the best dyeing performance amongst the studied red dyes.
The second part of this thesis is to introduce the Nic/NHCN couple which displayed one of the best dyeing performance into a blue and a orange chromophore. It was found that different chromophore has little effect on the hydrolysis constant (kobs) but the build up performance of Red and Orange dyes with Nic/NHCN reactive group is better than the conventional Cl/SES reactive dyes with the same chromophores in CPB application while the Nic/NHCN reactive group in big Blue chromophore is not as good as the conventional Cl/SES reactive dye. This results confirm once again that the performance of CPB dyeing could not be only considered the kobs value of reactive group, the combination effects such as molecular size and the solubility of dye in alkali CPB condition should be taken into consideration.
1 F. M. Drumond Chequer, G. A. Rodrigues de Oliveira, E. R. Anastácio Ferraz, J. C. Cardoso, M. V. Boldrin Zanoni and D. P. de Oliveir. Textile Dyes: Dyeing process and environmental impact, Chapter 1 Introduction. 2013. http://dx.doi.org/10.5772/53659
2. Mohamed A. Hassaan, Ahmed EI Nemr. America Journal of Environmental Science and Engineering. 2017, 1(3), 64-67.
3. 2019生產性能能源查核年報. 經濟部能源局, 財團法人工業技術研究院編印. 2019, 12月.
4. 李信宏. 台灣紡紗公會: 紡紗會訊. 2018, 03, 24-29.
5. W. E. Stephen. Chimia. 1965, 19, 261.
6. I. D. Rattee. Coloration Technology. 1984, 14, Issue 1.
7. J. Wegmann. J.S.D.C. 1960, 76, 205.
8. John Shore. Cellulosic Dyeing, Society of Dyers and Colourists, Bradford, West Yorkshire: London. 1995, 189.
9. John Shore. Colorants and Auxiliaries, Society of Dyers and Colourists, 2nd edition; West Yorkshire: UK. 2002, 356-358.
10. A.I. AHMED. Textile Dyer & Printer. 1995, 19.
11. T. E. Peacock. Electronic properties of aromatic and heterocyclic molecules. Academic Press: London. 1965, 103.
12. I.D. Rattee. J.S.D.C. 1969, 85, 23.
13. R. M. Christie. Colour Chemistry, Royal Society of Chemistry. 2015, 197-203.
14. https://echa.europa.eu/substance-information/-/substanceinfo/100.057.574 (ECHA歐盟化學署官網)
15. Beech, Walter Francis. Fibre-Reactive Dyes. Logos: London. 1970.
16. Textile Technical Division, Everlight Chemical Industrial Coperation. Dye product pattern card for Exhaustion dyeing, printing and Cold pad batch. 2000.
17. M. J. Bradbury, P. S. Collishaw and D.A.S. Phillips. J.S.D.C. 1992, 108, 430.
18. L.W.C. Miles. Textile Printing. Bradford: Society of Dyers and Colourists. 2nd Edition. 1994
19. D.M. Lewis. Coloration Technology. 2014, 130, 382 - 412.
20. A. J. Hall, B. Sc., F.R.I.C., F.T. I., F.S.D.C. Textile Recorder. Feb. 1962, 59.
21. https://emis.itri.org.tw/Book. 工業技術研究院, 經濟部能源局. 2014.
22. J. R. ASPLAND. Chapter 5/Part 2: Practical Application of Reactive Dyes. School of Textiles, Clemson University, Clemson, S. C., June 1999.
23. Robbie L. Stone. A Conservative Approach to Dyeing Cotton, Cotton Incoperated Raleigh, N.C. May 1979.
24. United States Environmental Protection Agency. Best Management Practices for Pollution Prevention in Textile Industry. EPA/625/R-96/004, Sep. 1996, 186-188.
25. Benninger, Erbatech, Goller. Technologies for Sustainable Cotton Textile Manufacturing Cotton Incoperated. 2009, 5-6.
26. Zeeshan Khatri, M. Hanif Memon, Khan Muhammad Brohi. Environment and Sustainable Development. 2011, 299-305.
27. Alonso A, Camargo JA. Arch Environ. Contam. Toxicol. 2011, 60, 511-517.
28. Alonso A, Camargo JA. Water Air Soil Pollution. 2011, 219, 81-90.
29. Camargo JA. A review Chemo-sphere. 2003, 50, 251-264.
30. Sandro Ponzini, Saronno. ACNA S.p.A. GB1110567(1968)
31. Sandro Ponzini, Saronno, Paolo Castelli, Monza, J. S. Lawendel. ACNA S.p.A. US3642787(1972)
32. J. Lindley Leng, B. Parton, D. R. Annesley Ridyard, J. R. Lawson. Imperial Chemical Industries Limited. US3996221(1976)
33. M. Miyato, Ohmiya, Y. Suzuki, M. Ojima, Y. Iizuka, R. Orita, T. Matsuo. Nippon Kayaku Kabushiki Kaisha. US4453945(1984)
34. L. Schlaefer, H. Springer, R. Haehnle. Hoechst A.-G. Fed. Rep. German. DE3637337(1988)
35. A. H. M. Renfrew, J. A. Taylor. Imperial Chemical Industries PLC. EP395207(1990)
36. D. Liu. K. Gao. L. Cheng. Dyes and Pigments. 1997, 33, 87-96.
37. A.H.M. Renfrew, I. Bates, V. Kampyli, D.A.S. Phillips. Dyes and Pigments. 2004, 60, 85-90.
38. V. Kampyli, D.A.S. Phillips. A.H.M. Renfrew. Dyes and Pigments 2004, 61, 165-175.
39. V. Kampyli, E. Maudru, D.A.S.Phillips, A.H.M. Renfrew, T. Rosenau. Dyes and Pigments. 2007,74, 181-186.
40. E. Karapinar, D. A. S. Phillips, J. A. Taylor. Dyes and Pigments 2007, 75, 491-497.
41. J. Paluszkiewicz, W. Czajkowski. Fibres &Textiles in Eastern Europe. 2007, 15, 101-103.
42. J. A. Bone, T. T. Le, D.A.S. Phillips. J. A. Taylor. Coloration Technology. 2008, 124, 117-126.
43. Ting-Kai Tseng, Chien-Yu Chen, Huei-Chin Huang. Everlight Chem. Ind. Corp. TW 201434996A
44. Wen-Jang Chen, Duncan A. S. Phillips, John A. Talor. Everlight Chem. Ind. Corp. TW201400555A
45. Chien-Yu Chen, Chen-Lung Kao, Ya-ching Yu, Huei-Chin Huang. Everlight Chem. Ind. Corp. TW201241102A
46. Wen-Zheng Chen, Chien-Yu Chen, Jia-Wen Lian. Everlight Chem. Ind. Corp. TWI308923B
47. Wen-Zheng Chen, Chien-Yu Chen, Chen-Lung Kao. Everlight Chem. Ind. Corp. TWI308582B
48. https://topic.epa.gov.tw/greenchem/cp-302-8060-e6081-1.html (台灣行政院環境保護署毒物及化學物質局)
49. Holger M. Buch, Reinhard Hahnle, Hartmut Springer. Hoechst Aktiengesellschaft. USP 5227475A
50. Stephen B. Bostock, Michael G. Hutchings, John A. Taylor. Zeneca Limited. USP 5359043A
51. Colin G.Tilley, Frederick A Waite. Imperial Chemical Indus. Ltd. GB899376A
52. https://scifindern.cas.org/searchDetail/substance/5f2288eb862ea95bd6e9f476/substanceDetails 2020.
53. Prakash Patel, Paul Wight. Avecia Ltd. WO2002070609
54. OECD Guidelines for the Testing of Chemicals. Test No. 111: Hydrolysis as a Function of pH. 2004. https://doi.org/10.1787/9789264069701-en.
55. A. H. M. Renfrew, J.A. Taylor. J. Soc. Dye Colour. 1989, 105, 441-5.
56. J. A. Taylor, A. H. M. Renfrew, J. N. Lovis. Coloration Technology, 1991,107, 455-9.
57. 張興華,張玉卿,曹世川. 天津德凱化工股份有限公司. CN101481514B
58. 謝兵,顧喆棟,曾建平. 上海雅選紡織,上海雅選精細化工股份有限公司. CN101870826B
59. 謝兵,曾建平,顧喆棟. 上海雅選紡織,上海雅選精細化工股份有限公司. CN 102060846A
60. 趙衛國,蘇金奇,鞠蘇華,王國民. 泰興錦云染料有限公司. CN 102584785B
61. K. Blus, J. Paluszkiewicz, W. Czajkowski. Fiber & Textile in Europe. 2005, 13, 75-78.
62. AATCC Test Method 61-1975, 3A. Colorfastness to laundering: Accelerated. 1975.
63. S. N. Croft, D. M. Lewis. Dyes and Pigments. 1992, 18, 309-317.
64. A. Solemani-Gorgani, J. A. Taylor. Dyes and Pigments. 2006, 68, 109-117.
65. A. Mehmood, D. A. S. Phillips, J. A. Bone and J. A. Taylor, Coloration Technolgy. 2009, 125, 43-52.
66. C. Wang, Yu-juan Wei, Yu-juan Hu, Hong-jie Ma. Yinran (印染,中國). 2014, 39, 19-21.
67. Mei ZHANG. Yinran (印染,中國). 2013, 8, 19-21.
68. Y. Zhang, W. Zhang. Clean Technologies and Environmental Policy. 2015, 17, 563-569.
69. Hang Xiao, Tao Zhao, Chun-Hong Li, Meng-Ying Li. Journal of Cleaner Production. 2017, 165, 1499-1507.
70. Abhijit Majumdar, Apurba Das R Alagirusamy, V. K. Kothari. Process Control in Textile Manufacturing. Woodhead Publishing Limited. 2013, 306-307.
71. T. L. Dawson, The reaction mechanism and fixation of monochloride-s-triazine dyes on cellulose using tertiary amine catalysts, J.S.D.C. 1964, 80, 134.
72. John Shore. Colorants and Auxiliaries. 2nd version. West Yorkshire, Society of Dyers and Colourists : UK. 2002, 389-390.
73. J. Xu, T. Rosenau, A. H. M. Renfrew, D.A.S. Phillips and E. Maudru. Coloration Technology. 2004, 120, 316-319.
74. ISO 105-E01. Textiles-Tests for colour fastness, Part E01: Colour fastness to water. 6th Edition. ISO : Switzerland. 2013.
75. E. Buncel, M. R. Crampton, M.J. Strauss. Eectron Deficient Aromatic and Heterocuclic-Base Interactions. New York :Elsevier. 1984.
76. A. R. Karitzky, A. J. Boulton, J. M. Lagowski. Advance in Heterocyclic Chemistry. Academic Press: New York and London. 1965, 4, 145.
77. A. Hunter M. Renfrew. Reactive Dyes for Textile Fibres -Neutral fixing reactive dyes. Society of Dyes and Colourants. 1999, 6, 139-155.
78. • Jack T. Thurston, James R. Dudley, Donald W. Kaiser, Ingenuin Hechenbleikner, Frederic C. Schaefer and Dagfrid Holm-Hansen. J. Am. Chem. Soc. 1951, 73, 2981–2983.
79. https://chemicalize.com/welcome/chemical-calculations-and-predictions n.d.
80. D. Dordevic, J. Cerkovnik, M. Gorensek, FIBERES & TEXTILES in Eastern Europe. 2006, 14, 56.
81. Jürgen Süss-Leonhardt, DyStar Textilfarben GmbH & Co. KG, Derek McKelvey, Marks & Spencer plc, Bernd Pesch, Küsters GmbH. Pigment & Resin Technology, 2016, 35, 4.
82. Perrin DD, Dempsey B, Serjeant EP. pK a Prediction for Organic Acids and
Bases. Springer, Dordrecht. 1981.