| 研究生: |
黃重瑜 Chung-yu Huang |
|---|---|
| 論文名稱: |
包藥電弧銲進行S45C/SS400異材銲接後經不同熱處理溫度之冶金與機械性質研究 The effect of a post-weld heat treatment on the metallurgical and mechanical properties of SS400 and S45C dissimilar joints welded by the gas shielded flux cored arc welding |
| 指導教授: | 傅尹坤 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 異材銲接 、氣體保護包藥電弧銲 、銲後熱處理 |
| 外文關鍵詞: | dissimilar welding, FCAW-G, PWHT |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
銲接用於船舶,橋樑,壓力容器,工業機械,汽車,機車車輛等諸多領域。與銲接相關的問題,亦在這些領域中出現。鋼的可銲接性與銲接熱影響區(HAZ)的最大硬度和銲縫的冷裂紋敏感性有關。當鋼的銲接基材金屬在受銲接時的非均勻加熱和冷卻,會生成較硬的熱影響區(HAZ),此會有冷裂紋敏感性和殘餘應力存留在銲件中。減少上述困難最好的方法就是緩慢的加熱與冷卻母材及銲接熱影響區。然而有許多方法用於減少上述問題的影響,其中之一就是預熱與後熱,其已被廣泛應用在銲接操作中,用於防止冷裂紋。實驗技術是雙V溝槽設計以對接方式採用包藥銲線電弧銲(Gas shielded Flux Cored Arc Welding,FCAW-G)自動送線機器,搭配相當於美國銲接協會之AWS A5.20 E70T-1 規格之包藥銲條執行,銲條直徑1.2 mm,並輔以流率20Lmin-1遮蔽氣體CO2銲接而成。本研究主要探討預熱與銲後熱處理在JIS G3101 SS400 結構鋼與AISI 1045 中碳鋼兩種不同材質的異材銲接中顯微組織與機械性質上之影響,以消除S45C熱影響區的最高硬度並提高韌性,嘗試找出最佳化參數,將製程標準化後,確保不同的銲接機具與人員皆能達成相同的銲接品質,以符合工業上之需求。
Ships, bridges, pressure vessels, industrial machinery, automobile, rolling stock and many other fields are all produced by welding technology. The common problem in these fields is associated with welding process. The maximum hardness of the heat affected zone (HAZ) and the cold cracking susceptibility of welds are results in Weldability of steel. It would generate harder HAZ, cold crack susceptibility and residual stress in weldment, when steel is welded non uniform heating and cooling in weld metal and in base metal. To slow the heating and cooling rate of the base metal and weld heat affected zone is the best way to minimize difficulties above. However there are many methods to solve it and one of them is preheating and post weld heat treatment (PWHT). Preheating and PWHT have been widely employed in welding operation for preventing cold cracking and the maximum hardness in HAZ. The weldments with double V groove type were butt-welded by multiple passes as shown in Fig. 2. An automated Gas shielded Flux-Cored Arc Welding (FCAW-G) machine was used, with a welding wire of diameter 1.2 mm and CO2 shielding gas at 20 Lmin-1 flow rate, conforming to the American Welding Society standards AWS A5.20. In this study, it investigate the effects of preheating and PWHT on the microstructure, mechanical properties of JIS G3101 SS400 structural steel and AISI 1045 midium carbon steel dissimilar joints. It would eliminate the maximum hardness in the S45C HAZ and increase the toughness of the weldment. The welding process would be standardized which base on the obtained optimization parameters, in order to ensuring the welding quality from different workers that could reach the demands of industry.
2006. p. 249. ISBN 0-07-295358-6.
[3] Smith WF, Hashemi J. Foundations of Materials Science and Engineering 4th. McGraw-Hill; 2006. p. 373-378. ISBN 0-07-295358-6.
[4] Smith WF, Hashemi J. Foundations of Materials Science and Engineering 4th. McGraw-Hill; 2006. p. 388. ISBN 0-07-295358-6.
[5] Bang H, Kim Y. in Proceedings of the Annual Meeting of Korean Welding Society 2001:134.
[6] Jeong HC. Welding characteristics of S45C medium carbon steel in laser welding process using a high power CW Nd YAG laser. J Korean Weld Soc 1999; 17:1.
[7] 蔡金峯、姜志華,”銲接冶金概論”,徐氏基金會,台北,民國76年8月,p16。
[8] 賴振慶,”ASTM A533與A572異種基材金屬銲接之銲接性質研究”,成功大學機械工程學系碩士在職專班學位論文,台南,民國95年,p4。
[9] Aloraier AS, Ibrahim RN, Ghojel J. Eliminating post-weld heat treatment in repair welding by temper bead technique: role bead sequence in metallurgical changes. J Mater Process Technol 2004; 153-154: 392-400.
[10] 馮春源,”鋼結構用鋼材與銲材”,天泰銲材工業股份有限公司。
[11] Murugan S, Rai SK, Kumar PV, Jayakumar T, Raj B, Bose MSC. Temperature distribution and residual stresses due to multipass welding in type 304 stainless steel and low carbon steel weld pads. Int J Pres Ves Piping 2001;78:307-17.
50
[12] Kang JG, Ryu GS, Kim DC, Kang MJ, Park YW, Rhee S. Optimization of arc-start performance by wire-feeding control for GMA welding. J Mech Sci Technol 2013; 27(2):501-9.
[13] Kou S. Welding metallurgy. 2nd ed. A Wiley-Interscience Publication; 2002.
[14] Babu SPK, Natarajan S. High temperature corrosion and characterization studies in flux cored arc welded 2.25Cr-1Mo power plant steel. J Mater Eng Perform 2010; 19:743-50.
[15] 周長彬、蘇程裕、蔡丕樁、郭央諶,”銲接學”,全華圖書股份有限公司,台北,民國101年1月。
[16] Liao MT, Chen WJ. A comparison of gas metal arc welding with flux-cored wires and solid wires using shielding gas. Int J Adv Manuf Technol 1999; 15:49-53.
[17] Myers T. Cost, overall operator appeal, and weld quality must all be considered when selecting the shielding gas for a flux cored arc welding application. Weld J 2010; 80:30-3.
[18] ”TWE-711規格”,天泰銲材股份有限公司,台南市仁德區
[19] 溫烱亮、傅豪、李正國、林本源,”熱處理”,高立圖書有限公司,台北,民國86年12月,p76。
[20] ASME. Boilers & Pressure Vessels code. Section I: power boiler 2015 edh.
[21] JIS Z3700. Methods of post weld heat theatment; 1987.
[22] Manigandan K, Srivatsan TS, Quick T, Sastry S, Schmidt ML. Influence of microstructure and load ratio on cyclic fatigue and final fracture behavior of two high strength steels, Mater Des 2014; 55: 727-39.
[23] Shena S, Oguochaa INA, Yannacopoulos S. Effect of heat input on weld bead geometry of submerged arc welded ASTM A709 Grade 50 steel joints, J Mater Process Technol 2012; 212: 286–94.
51
[24] Mirzaei M, Jeshvaghani RA, Yazdipour A, Zangeneh-Madar K. Study of welding velocity and pulse frequency on microstructure and mechanical properties of pulsed gas metal arc welded high strength low alloy steel. Mater Des 2013; 51:709-13.
[25] Askland DR, Phule PP. The science and engineering of materials 4th ed. Pacific Grove, CA: Brooks Cole-Thompson Learning 2003.
[26] Lan L, Qiu C, Zhao D, Gao X, Du L. Analysis of martensite–austenite constituent and its effect on toughness in submerged arc welded joint of low carbon bainitic steel. J Mater Sci 2012; 47:4732-42.
[27] Gharibshahiyan E, Raouf AH, Parvin N, Rahimian M. The effect of microstructure on hardness and toughness of low carbon welded steel using inert gas welding. Mater Des 2011; 32:2042-48.
[28] Kumar S, Shahi AS. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints, Mater Des 2011; 32:3617-23.
[29] Lee JS, Jeong SH, Lim DY, Yun JO, Kim MH. Effects of welding heat and travel speed on the impact property and microstructure of FC welds. Met Mater Int 2010; 16:827-32.
[30] Kumar VV, Murugan N. Effect of FCAW process parameters on weld bead geometry in stainless steel cladding. J Miner Mater Char Eng 2011; 10:827-42.
[31] Aloraier A, Almazrouee A, Shehata T, Price JWH. Role of welding parameters using the flux cored arc welding process of low alloy steels on bead geometry and mechanical properties. J Mater Eng Perform 2012; 21:540-47.
[32] ASTM International Standard E23. Standard test methods for notched bar impact testing of metallic materials 2013.
[33] ASTM International Standard E190-92. Standard Test Method for Guided
52
Bend Test for Ductility of Welds 2013.
[34] ASTM International Standard E384. Standard test method for knoop and vickers hardness of materials 2014.
[35] Lee JS, Jeong SH, Lim DY, Yun JO, Kim MH. Effects of welding heat and travel speed on the impact property and microstructure of FC welds. Met Mater Int 2010; 16:827-32.
[36] Svensson LE, Control of Microstructures and Properties in Steel Arc Welding, CRC Press, Boca Raton, FL, 1994.
[37] Chapetti MD, Miyata H, Tagawa T, Miyata T, Fujioka M, Fatigue strength of ultra-fine grained steels. Mater Sci Eng A 2004; 381:331.