| 研究生: |
岳彤 Ton Yueh |
|---|---|
| 論文名稱: |
矽晶太陽能板之開口率與地面照度之分析 The study of aperture ratio of photovoltaic panel and illuminance analysis |
| 指導教授: |
孫慶成
Ching-Cherng Sun 楊宗勳 Tsung-Hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 光學 、照度 、太陽能板 |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著時代的變遷,對於能源的需求,成為了世界各國關注的焦點,在地球資源日漸枯竭的情況下,尋找替代能源變成當務之急。綠色能源是指從自然界中取得的能源,例如風能、太陽能和水能等,這些能源具有可再生且對環境的影響相對較小的特點。在人類發展的脈絡下,綠色能源提供了一條實現可持續發展的途徑,因為它減少了我們對於化石燃料的依賴。
太陽能,在所有綠色能源中擔當著重要角色,不僅因為它幾乎無窮無盡、普遍可獲得,還因為它具有轉換效率高、運維成本低和技術進步快的特點。太陽能技術的發展,特別是在太陽能板的效率和成本降低方面,使得太陽能成為許多地區和國家能源結構轉型的首選。
本論文之主要目的,是研究光學擴散板之光學特性,並且在ASAP(Advanced System Analysis Program) 光學模擬軟體中建立太陽能板開口率與光學擴散片的光學模型。太陽能板以直線式排列(straight-line)置於溫室屋頂以用於地面照度之分析,不同屋頂高度及不同開口率之設計。
將光學擴散片以及矽晶太陽能板置於屋頂形成溫室的主要目的是為一年四季和農作物創建一個封閉和可控制的照明系統。藉由分析不同的屋頂高度,以及不同的太陽能板開口率,有助於節省寶貴的土地資源。溫室屋頂上的傾斜角度,讓陽光以適合的入射角度到達光學擴散片。屋頂陽光將被用於太陽能發電,而通過光學擴散片的陽光進入溫室以促進作物生長。
Finding alternative sources of energy is important.Green energy, derived from natural sources like wind, solar, and hydro, is renewable and has a smaller environmental footprint. In the context of human development, green energy offers a path to sustainable development by reducing our reliance on fossil fuels.
Solar energy plays a pivotal role among green energies, not only due to its almost infinite availability and universality but also due to its high conversion efficiency, low operational costs, and rapid technological advancements. The evolution of solar technology, especially in terms of efficiency and cost reduction of solar panels, has made it the preferred choice for energy transformation in many regions and countries.
The primary aim of this thesis is to study the optical characteristics of diffusion plates and to establish in the ASAP (Advanced System Analysis Program) optical simulation software, a model of solar panel aperture ratios and the optical diffusion plates. Solar panels are arranged in straight lines on greenhouse roofs for the analysis of ground illuminance, with designs varying in roof height and aperture ratio.
The main purpose of placing optical diffusion plates and silicon solar panels on the roof to form a greenhouse is to create a closed and controllable lighting system for all seasons and crops. By analyzing different roof heights and solar panel aperture ratios, we can conserve valuable land resources. The sloped angle of the greenhouse roof allows sunlight to reach the optical diffusion plates at an ideal incidence angle. Sunlight on the roof is used for solar power generation, while sunlight passing through the optical diffusion plates enters the greenhouse to promote crop growth.
[1] Midilli, A., et al. (2006). "Green energy strategies for sustainable development." Energy policy 34(18): 3623-3633.
[2] [2] Kannan, N. and D. Vakeesan (2016). "Solar energy for future world:-A review." Renewable and sustainable energy Reviews 62: 1092-1105.
[3] Herbert, G. J., et al. (2007). "A review of wind energy technologies." Renewable and sustainable energy Reviews 11(6): 1117-1145.
[4] Bao, B. and Q. Wang (2021). "A rain energy harvester using a self-release tank." Mechanical Systems and Signal Processing 147: 107099.
[5] O’Rourke, F., et al. (2018). Tidal energy update 2009. Renewable Energy, Routledge: Vol3_451-Vol453_476.
[6] Barbier, E. (2002). "Geothermal energy technology and current status: an overview." Renewable and sustainable energy Reviews 6(1-2): 3-65.
[7] Jeffry, L., et al. (2021). "Greenhouse gases utilization: A review." Fuel 301: 121017.
[8] 經濟部能源署, https://reurl.cc/M46qbm
[9] 經濟部能源署, https://reurl.cc/806d5o
[10] 中央通訊社, https://reurl.cc/D4KGAN
[11] 莊翔仁 (2021). "再生能源發展對 2025 年非核家園目標之政策影響研究."
[12] 國家發展委員會,https://reurl.cc/4jlzvR
[13] 行政院,https://reurl.cc/OG6NLA
[14] 行政院,https://reurl.cc/RW2VEz
[15] 農業部,https://reurl.cc/aLXY8X
[16] 財訊雜誌, https://reurl.cc/E4gEjg
[17] 屏東縣政府全球資訊網,https://reurl.cc/77E8Ll
[18] 內政部統計處,https://reurl.cc/138V79
[19] 內政部戶政司全球資訊網,https://reurl.cc/Xq28yD
[20] 上下游新聞, https://reurl.cc/RWLxLZ
[21] 農業資源與綠能趨勢網,https://reurl.cc/G4a6Od
[22] 農業資源與綠能趨勢網,https://reurl.cc/Qe2qxb
[23] 全國法規資料庫,https://reurl.cc/RW2Vmz
[24] Zhao, Y., et al. (2023). "Achieving sustainability of greenhouses by integrating stable semi-transparent organic photovoltaics." Nature Sustainability 6(5): 539-548.
[25] 物理雙月刊,https://reurl.cc/97Wkav
[26] 王政凱 and 林明璋 (2007). 氮化銦/二氧化鈦太陽能電池: 利用硼酸和亞磷酸修飾二氧化鈦表面之效應.
[27] Canfield, P. C. and Z. Fisk (1992). "Growth of single crystals from metallic fluxes." Philosophical magazine B 65(6): 1117-1123.
[28] Möller, H. J., et al. (2005). "Multicrystalline silicon for solar cells." Thin Solid Films 487(1-2): 179-187.
[29] Derby, J., et al. (1989). "An integrated process model for the growth of oxide crystals by the Czochralski method." Journal of crystal growth 97(3-4): 792-826.
[30] Cotter, J., et al. (2006). "P-type versus n-type silicon wafers: prospects for high-efficiency commercial silicon solar cells." IEEE Transactions on Electron Devices 53(8): 1893-1901.
[31] Ozima, M. and F. A. Podosek (2002). Noble gas geochemistry, Cambridge University Press.
[32] 材料世界網,https://www.materialsnet.com.tw/
[33] Meyyappan, M., et al. (2003). "Carbon nanotube growth by PECVD: a review." Plasma sources science and technology 12(2): 205.
[34] Rappaport, P. (1959). "The photovoltaic effect and its utilization." Solar Energy 3(4): 8-18.
[35] Kim, G. (2005). "A PMMA composite as an optical diffuser in a liquid crystal display backlighting unit (BLU)." European polymer journal 41(8): 1729-1737.
[36] Wu, S., et al. (2022). "Optical efficiency and performance optimization of a two-stage secondary reflection hyperbolic solar concentrator using machine learning." Renewable Energy 188: 437-449.
[37] Skaar, J. (2006). "Fresnel equations and the refractive index of active media." Physical Review E 73(2): 026605.
[38] Sanghera, J., et al. (2010). "Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces." Optics Express 18(25): 26760-26768.
[39] Tanoue, Y., et al. (2013). "Densely arranged two-dimensional silver nanoparticle assemblies with optical uniformity over vast areas as excellent surface-enhanced Raman scattering substrates." Physical Chemistry Chemical Physics 15(38): 15802-15805.
[40] Woolley, J. T. (1971). "Reflectance and transmittance of light by leaves." Plant physiology 47(5): 656-662.
[41] Glatter, O. (1977). "A new method for the evaluation of small-angle scattering data." Journal of Applied Crystallography 10(5): 415-421.
[42] Lee, J.-H., et al. (2008). "A simple and effective fabrication method for various 3D microstructures: backside 3D diffuser lithography." Journal of micromechanics and microengineering 18(12): 125015.
[43] Chang, R.-S., et al. (2012). "LED backlight module by lightguide-diffusive component." Journal of Display Technology 8(2): 79-86.
[44] 塑膠表面處理, https://reurl.cc/Z9ZpvM
[45] Frazer, R. Q., et al. (2005). "PMMA: an essential material in medicine and dentistry." Journal of long-term effects of medical implants 15(6).
[46] Davis, A. and J. Golden (1969). "Stability of polycarbonate." Journal of Macromolecular Science, Part C 3(1): 49-68.
[47] Baranov, V. I. i. (1961). Radiometry, US Atomic Energy Commission, Office of Technical Information.
[48] Chadwick, J. and M. Goldhaber (1935). "The nuclear photoelectric effect." Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences 151(873): 479-493.
[49] Turner, D. W. (1970). "Molecular photoelectron spectroscopy." Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences: 7-31.
[50] Copeland, A. W., et al. (1942). "The Photovoltaic Effect." Chemical reviews 31(1): 177-226.
[51] Pantelides, S. T., et al. (1974). "Correlation effects in energy-band theory." Physical Review B 10(6): 2602.
[52] Yablonovitch, E. (1993). "Photonic band-gap structures." JOSA B 10(2): 283-295.
[53] Jasieniak, J., et al. (2011). "Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals." ACS nano 5(7): 5888-5902.
[54] Lawaetz, P. (1971). "Valence-band parameters in cubic semiconductors." Physical Review B 4(10): 3460.
[55] Brus, L. E. (1984). "Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state." The Journal of chemical physics 80(9): 4403-4409.
[56] Sah, C.-T., et al. (1957). "Carrier generation and recombination in pn junctions and pn junction characteristics." Proceedings of the IRE 45(9): 1228-1243.
[57] Hulst, H. C. and H. C. van de Hulst (1981). Light scattering by small particles, Courier Corporation.
[58] Bhattacharjee, S. (2016). "DLS and zeta potential–what they are and what they are not?" Journal of controlled release 235: 337-351.
[59] Bucholtz, A. (1995). "Rayleigh-scattering calculations for the terrestrial atmosphere." Applied optics 34(15): 2765-2773.
[60] Seinfeld, J. H. and S. N. Pandis (2016). Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons.
[61] Wiscombe, W. J. (1980). "Improved Mie scattering algorithms." Applied optics 19(9): 1505-1509.
[62] Ward, A. and J. B. Pendry (1996). "Refraction and geometry in Maxwell's equations." Journal of modern optics 43(4): 773-793.
[63] Du, H. (2004). "Mie-scattering calculation." Applied optics 43(9): 1951-1956.
[64] Nicodemus, F. E. (1965). "Directional reflectance and emissivity of an opaque surface." Applied optics 4(7): 767-775.
[65] Torrance, K. E. and E. M. Sparrow (1967). "Theory for off-specular reflection from roughened surfaces." JOSA 57(9): 1105-1114.
[66] Achenbach, J. and A. Norris (1982). "Loss of specular reflection due to nonlinear crack-face interaction." Journal of Nondestructive evaluation 3: 229-239.
[67] Bartell, F. O., et al. (1981). The theory and measurement of bidirectional reflectance distribution function (BRDF) and bidirectional transmittance distribution function (BTDF). Radiation scattering in optical systems, SPIE.
[68] Bohren, C. F. (1983). "How can a particle absorb more than the light incident on it?" American Journal of Physics 51(4): 323-327.
[69] Jacquez, J. A. and H. F. Kuppenheim (1955). "Theory of the integrating sphere." JOSA 45(6): 460-470.
[70] Marti, A., et al. (1997). "Photon recycling and Shockley’s diode equation."
[71] 孫慶成, et al. (2014). "LED 照明的一階光學技術." 科儀新知(200): 85-98.
[72] Briechle, K. and U. D. Hanebeck (2001). Template matching using fast normalized cross correlation. Optical Pattern Recognition XII, SPIE.
[73] 彰化永豐太陽能, https://reurl.cc/Z9ZDal
[74] Willson, R. C., et al. (1981). "Observations of solar irradiance variability." Science 211(4483): 700-702.
[75] 農業部農業試驗所, https://reurl.cc/mrRan7