跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭家榜
Chia-pang Kuo
論文名稱: 利用MISR衛星資料反演陸地區域氣膠光學厚度和地表反射率
Applying Terra/MISR data to retrieve aerosol optical thickness and surface reflectance over land
指導教授: 林唐煌
Tang-huang Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 太空及遙測研究中心 - 遙測科技碩士學位學程
Master of Science Program in Remote Sensing Science and Technology
畢業學年度: 98
語文別: 中文
論文頁數: 155
中文關鍵詞: MISR地表反射率氣膠光學厚度
外文關鍵詞: Aerosol optical thickness, Surface reflectance, MISR
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前研究氣膠是一件重要的課題,因為氣膠會影響傳輸至地面的太陽輻射、空氣品質、能見度以及氣候,由氣膠的含量可以評估影響的程度,但是氣膠含量隨時間和空間變化很大,所以使用衛星資料提供大範圍的資訊,進行反演氣膠光學厚度,但是反演時通常需要地表反射率的資料才可以求解,因此本研究將使用多觀測角度及多光譜的MISR衛星資料,以輻射傳送方程為基礎,同時反演氣膠光學厚度和地表反射率。
    本研究使用2006 ~ 2008 EPA_NCU和2001 ~ 2009 Beijing AERONET測站資料及其MISR衛星資料,進行反演方法之建立。以太陽天頂角得到線性參數線性化輻射傳送方程式,配合由紅外波段顯反射率得到的不同衛星觀測角之間地表反射率的比值以及由太陽天頂角推求得到的不同衛星觀測角之間背向散射係數的比值,藉由最小二乘法之求解,可以得到的地表反射率和H值(大氣光學厚度和背向散射系數的乘積),最後根據大氣光學厚度和背向散射係數的關係,便可計算氣膠光學厚度。
    由AERONET觀測資料和MISR地表反射率產品之驗證結果顯示,本研究反演的地表反射率和氣膠光學厚度的誤差分別約8 %和30 %,相較於MISR氣膠產品約38 %的誤差,具有較佳的反演結果,此外,本研究所提供的反演方法亦可同時反演地表反射率和氣膠光學厚度。


    Presently aerosol study is an important issue, because it can influence solar radiation which radiates earth, air quality, visibility and climate. It can evaluate degree of impact from aerosol content. But aerosol will change with time and space, using satellite wild range data is good for retrieve aerosol optical thickness which need surface reflectance information. This study will establish a retrieved method to simultaneously retrieve surface reflectance and aerosol optical thickness by using radiation transfer equation and MISR multi-band and multi-angle satellite data.
    Analyzing 2006 ~ 2008 EPA_NCU and 2001 ~ 2009 Beijing AERONET data and MISR satellite data indicate that utilize solar zenith angle to linearize radiation transfer equation and take into account characteristics of surface reflectance and backscattering coefficient at different viewing angle can retrieve surface reflectance and H value which is product of atmosphere optical thickness and backscattering coefficient by least squares method. Then aerosol optical thickness (AOT) can be solved by relation of atmosphere optical thickness and backscattering coefficient.
    The verification results show that the error of retrieved surface reflectance and AOT is 8 % and 30 % respectively and the error of MISR aerosol product is 38 %. Therefore, the retrieval method mentioned in this study can simultaneously provide accurate AOT and surface reflectance.

    摘要......................................................i Abstract.................................................ii 致謝....................................................iii 目錄.....................................................iv 表目錄...................................................vi 圖目錄.................................................viii 符號說明.................................................xi 第1章 緒論................................................1 1-1前言...................................................1 1-2文獻回顧...............................................4 1-3研究目的...............................................7 第2章 理論基礎與研究方法..................................9 2-1 MISR反演氣膠光學厚度的方法............................9 2-1-1地表反射形狀相似演算法..............................12 2-1-2主成分演算法........................................14 2-2輻射傳送方程式........................................16 第3章 儀器介紹與資料處理.................................23 3-1 MISR.................................................23 3-2 AERONET..............................................30 3-3研究資料及其處理方式..................................31 第4章 氣膠模式之改進與結果討論...........................37 4-1反演模式之探討........................................51 4-2反演參數之探討........................................53 4-2-1反演模式之常數......................................53 4-2-2背向散射係數........................................60 4-2-3氣膠光學厚度........................................64 4-2-4參數線性化..........................................67 4-3建立反演氣膠光學厚度的方法............................75 4-3-1太陽幾何位置........................................85 4-3-2大氣光學厚度........................................90 4-3-3大氣粒子之粒徑......................................93 4-3-4氣膠參數............................................98 4-4結果驗證.............................................103 第5章 結論與展望........................................119 參考文獻................................................123 附錄一..................................................127 附錄二..................................................131 附錄三..................................................135

    [1] 許世壁,非線性聯立方程式數值方法,中央圖書出版社,台北,民國七十七年。
    [2] 曾忠一,大氣輻射,聯經出版社,台北,民國七十七年。
    [3] Ångström, A., “Techniques of determining the turbidity of the atmosphere”, Tellus, 13, 214, 1964.
    [4] Burden, R. L., and Faires, J. D.著,數值分析,江大成譯,滄海,台中,民國九十五年。
    [5] Charlson, R. J., and Heintzenberg, J., Aerosol forcing of climate, Chichester, New York, 1995.
    [6] Diner, D. J., Martonchik, W. A., Kahn, R. A., Pinty, B., Gobron, N., Nelson, D. L. and Holben, B. N., “Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land”, Remote Sens. Environ., 94, 155-171, 2005.
    [7] Flowerdew, R. J., and Haigh, J. D., “An approximation to improve accuracy in the derivation of surface reflectances from multi-look satellite radiometers”, Geophysical Research Letters, 22(13), 1693-1696, 1995.
    [8] Guo, J., Xiao, H., Xue, Y., Che, H., Zhang, X., Cao, C., Guangc, J., Zhangc, H., “A new method to retrieve aerosol optical thickness from satellite images on a parallel system”, Particuology, 7(5), 392-398, 2009a.
    [9] Guo, J., Xue, Y., Cao, C., Zhang, H., Guang, J., and Zhang, X., “A synergic algorithm for retrieval of aerosol optical depth over land”, Advances in Atmospheric Sciences, 26(5), 973-983, 2009b.
    [10] Herman, J. R. and Celarier, E. A., “Earth surface reflectivity climatology at 340-380 nm from TOMS data”, J. Geophys. Res., 102, 28 003–28 011, 1997.
    [11] Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R., “Aerosol properties over bright-reflecting source regions”, IEEE Transactions on Geoscience and Remote Sensing, 42(3), 557-569, 2004.
    [12] Intergovernmental Panel on Climate Change (IPCC), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York, 2007.
    [13] Jiang, X., Liu, Y., Yu, B., and Jiang, M., “Comparison of MISR aerosol optical thickness with AERONET measurements in beijing metropolitan area”, Remote Sensing of Environment, 107(1-2), 45-53, 2007.
    [14] Kahn, R. A., Gaitley, B. J., Martonchik, J. V., Diner, D. J., Crean, K. A., and Holben, B., “Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident aerosol robotic network (AERONET) observations”, Journal of Geophysical Research-Atmospheres, 110(D10), D10S04, 2005.
    [15] Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B. C., Li, R. R., and Flynn, L., “The MODIS 2.1μm channel-correlation with visible reflectance for use in remote sensing of aerosol”, IEEE Transactions on Geoscience and Remote Sensing, 35(5), 1286-1298, 1997.
    [16] Kaufman, Y. J., Tanre, D., and Boucher, O., “A satellite view of aerosols in the climate system”, Nature, 419(6903), 215-223, 2002.
    [17] Kokhanovsky, Alex A., and Leeuw, G. H. de, Satellite aerosol remote sensing over land, Springer, New York, 2009.
    [18] Kontratyev, K. Ya., Radiation in the atmosphere., Academic Press, New York, 1969.
    [19] Kuznetzov, E. S., “On the problem of approximate transfer equations in a scattering and absorbing medium”, Rept. Acad. Sci. USSR, 37, Nos. 7 and 8, 1942.
    [20] Lindfield, G., and Penny, J.著,數值方法-使用MATLAB程式語言,黃俊銘譯,全華,台北,民國九十年。
    [21] Linke, F., “Die Sonnestrahlung und ihre schwachung in der atmosphere”, Handbuch der geopgyisk, Bd. VIII, herausgeg, von F. Linke, and F. Moeller (Berlin: Gebr. Borntraeger), 1942-1956, kap. 6, 1956. (in German)
    [22] Martonchik, J. V., Diner, D. J., Kahn, R. A., Ackerman, T. P., Verstraete, M. M., Pinty, B. and Gordon, H. R., “Techniques for the retrieval of aerosol properties over land and ocean using multi-angle imagery”, IEEE Trans. Geosci. Remote Sens., 36, 1212-1227, 1998.
    [23] Martonchik, J. V., Diner, D. J., Crean, K. A. and Bull, M. A., “Regional aerosol retrieval results from MISR”, IEEE Trans. Geosci. Remote Sens., 40, 1520-1531, 2002.
    [24] Tang, J., Xue, Y., Yu, T., and Guan, Y., “Aerosol optical thickness determination by exploiting the synergy of TERRA and AQUA MODIS”, Remote Sensing of Environment, 94(3), 327-334, 2005.
    [25] Tanrè, D., Devaux, C., Herman, M., Santer, R., and Gac, J. Y., “Radiative properties of desert aerosols by optical ground based measurements at solar wavelengths”, Journal of Geophysical Research-Atmospheres, 93(D11), 14223-14231, 1988.
    [26] Weitkamp, C., Lidar: range-resolved optical remote sensing of the atmosphere, Springer, New York, 2005.
    Xue, Y., and Cracknell, A. P., “Operational bi-angle approach to retrieve the earth surface albedo from AVHRR data in the visible band”, International Journal of Remote Sensing, 16(3), 417-429, 1995.
    [27] Xue, Y., and Cracknell, A. P., “Operational bi-angle approach to retrieve the earth surface albedo from AVHRR data in the visible band”, International Journal of Remote Sensing, 16(3), 417-429, 1995.

    QR CODE
    :::