| 研究生: |
林鑫呈 Hsin-cheng Lin |
|---|---|
| 論文名稱: |
適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計 A 4×4 MIMO Detector for IEEE 802.11n Systems |
| 指導教授: |
蔡佩芸
Pei-yun Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 多輸入多輸出 |
| 外文關鍵詞: | MIMO, IEEE 802.11n |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中提出可改善傳統K-Best球面演算法的解碼性能的前瞻式架構。傳統的K-Best架構在進行解碼時, 在判斷存活路徑時僅就該層節點的PEDs進行判斷, 導致最大可能的解有一定的機率被排除在K個存活路徑之外, 容易造成錯誤的情況因而造成效能衰減。所提出的前瞻式架構有別於傳統K-Best架構的地方在於後者, 因此, 而前者也就是本論文所提出的前瞻式K-Best球面演算法在判斷時不僅以該層節點的PEDs進行判斷, 而是將該層節點延伸至下一層之子節點的PEDs拿來做判斷, 因為下一層子節點的PEDs所包含的兩層資訊遠多於只包含一層資訊的PEDs, 用來判斷將可提升存活路徑包含可能解的機率, 也就是說可以有效的提升效能。就模擬結果而言, 當K值皆為10時, 我們可以發現前瞻式架構的效能在錯誤率4×10-4左右的時候, 優於傳統K-Best演算法約4 分貝(dB)。在硬體的實作上, 採用管線式架構以達到高產出的目的, 同時以1-norm取代2-norm, 1’s complement取代2’s complement, 以及硬體共用等概念來降低硬體複雜度, 對於前瞻式架構中的前置排序處理模組來說, 此三種方法, 依據合成的結果可減少70%的複雜度。
A look-ahead algorithm that can improve the detection performance of the conventional K-Best sphere decoding algorithm is proposed in this thesis. In the conventional K-Best sphere decoder, which uses the partial Euclidean distance (PED) in the current layer to decide the K survival paths, the maximum likelihood (ML) solution may be expelled in the top layers and thus its performance is degraded. However, the proposed look-ahead technique uses not only the PEDs in the current layer, but also the PEDs of the best child node in the next layer. Because that the PEDs of survival nodes in two layers contain more information than the PEDs of the survival node in one single layer, the probability of reaching the ML solution can be increased. We can see that the one-layer look-ahead algorithm outperforms the conventional K-best algorithm about 4 dB when the BER is around 4×10-4. As to the hardware implementation, a pipeline architecture is employed to enhance the throughput. Moreover, we replace the 2-norm by 1-norm, 2’s complement by 1’s complement and also use common term extraction. With these techniques, the hardware of the pre-sorting process in the look-ahead unit can be reduced more than 70%.
[1] K. W. Wong, C. Y. Tsui, R. S. K. Cheng, and W. H. Mow, “A VLSI Architecture of A K-best Lattice Decoding Algorithm for MIMO Channels,” IEEE International Symposium on Circuits and Systems, pp. III-273-III-276, May 2002.
[2] A. Burg , M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei, “VLSI Implementation of MIMO Detection Using the Sphere Decoding Algorithm,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 1566-1577, July 2005.
[3] H. C. Chang, Y. C. Liao, and H. C. Chang, “Low Complexity Prediction Techniques of K-best Sphere Decoding for MIMO Systems,” , IEEE Workshop on Signal Processing Systems, pp. 45 – 49, Oct. 2007.
[4] L.G. Barbero and J. S. Thompson, “Performance Analysis of a Fixed-Complexity Sphere Decoder in High-Dimensional MIMO Systems,” IEEE International Conference on Acoustics, Speech and Signal Processing, pp. IV-IV, May 2006.
[5] Enhanced Wireless Consortium, “HT PHY Specification-Enhanced Wireless Consortium publication”, Dec, 2005.
[6] TGn Channel Model: IEEE 802.11-03/904r4
[7] G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-Blast: An Architecture for Realizing Fery High Data rates Over the Rich-Scattering Wireless Channel,” Tech. Rep., 07733P. W. Wolniansky Holmdel, NJ: Bell Labs., Lucent Technol., Crawford Hill Lab., 1999.
[8] S. M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communications,” IEEE JSAC, vol. 16, pp. 1451-1458, Oct. 1998.
[9] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-Time Block Codes From Orthogonal Designs,” IEEE Trans. Inform. Theory, vol. 45, pp. 1456-1467, July 1999.
[10] A. V. Geramita and J. Seberry, Orthogonal Designs, Quadratic Forms and Hadamard Matrices, Lecture Notes in Pure and Applied Mathematics, vol. 43. New York and Basel: Marcel Dekker, 1979.
[11] U. Fincke and M. Pohst, “Improved Methods for Calculating Vectors of Short Length in A Lattice, Including A Complexity Analysis,” Math. Comput., vol. 44, pp. 463-471, Apr. 1985.
[12] M. Euchner, C. P. Schnorr, "Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems," Computer Science and Mathematics and Statistics, Vol. 66(1-3), pp. 181-199, 1994.
[13] Z. Guo, P. Nilsson, “VLSI Implementation issues of Lattice Decoders for MIMO Systems,” IEEE International Symposium on Circuits and Systems, pp. IV-477- IV-480, May 2004.
[14] S. Chen, T. Zhang and Y. Xin, “Breadth-First Tree Search MIMO Signal Detector Design and VLSI Implementation,” in Proc. IEEE MILCOM, vol. 3, pp. 1470-1476, Oct. 2005.
[15] D. Pham, K. R. Pattipati, P. K. Willett, and J. Luo, “An Improved Complex Sphere Decoder for V-BLAST Systems,” IEEE Signal Process. Lett., vol.11, no.9, pp. 748-751, Sept. 2004.
[16] M. O. Damen, A. Chkeif, and J. C. Belfiore, “Lattice Code Decoder for Space- Time Codes,” IEEE Communications letters, vol. 4, no. 5, pp. 161–163, May 2000.
[17] E. Argell, E. Eriksson, A. Vardy, and K. Zeger, “Closest Point Search in Lattices,” IEEE Transactions on Information Theory, vol. 48, no. 8, pp. 2201–2214, August 2002.
[18] S. H. Kang, I. C. Park, “Fast and Area-Efficient Sphere Decoding Using Look-Ahead Search,” IEEE Vehicular Technology Conference, pp. 2384-2388, April 2007.
[19] A. Wiesel, X. Mestre, A. Pags, and J. R. Fonollosa, "Efficient implementation of sphere demodulation," in Proceedings of the IEEE Workshop on Signal Processing Advances in Wireless Communications , pp. 36-40, Rome, Italy, June 2003.
[20] Q. Li, Z. Wang, “An Improved K-Best Sphere Decoding Architecture for MIMO Systems,” IEEE Asilomar Conference on Signals, Systems and Computers, pp. 2190 – 2194, Oct. 2006.
[21] M. Shabany, P. G. Gulak, “A 0.13μm CMOS 655Mbs, 4x4 64-QAM K-Best MIMO Detector,” IEEE International Solid-State Circuits Conference, pp. 256-257, Feb. 2009.
[22] D. Wubben, R. Bohnke, J. Rinas, J. Kuhn, and K. D. Kammeyer, “Efficient Algorithm for Decoding Layered Space-Time Codes,” Institution of Engineering and Technology, vol.37, pp. 1348-1350, Oct. 2001.