| 研究生: |
沈宜佳 I-Chia Shen |
|---|---|
| 論文名稱: |
矽酸鹽螢光粉之量子效率量測與精確光學模型 Measurement of Quantum Efficiency of Silicate phosphors for Precise Optical Modeling |
| 指導教授: |
孫慶成
Ching - Cherng Sun 楊宗勳 Tsung-Hsun Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 量子轉換效率 、矽酸鹽 、螢光粉 、發光二極體 |
| 外文關鍵詞: | quantum efficiency, silicate, YAG, phosphors, LED |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
採用螢光粉封裝之白光LED,除了會隨著不同的封裝形式,有著不同的光學特性外,不同種類的螢光粉,亦有不同的轉換效率,對白光LED的發光效率有直接影響,所以,對於螢光粉模型與其轉換效率之研究是一個相當重要的課題。本論文中,為了得到較精確的螢光粉轉換效率,我們改良了傳統實驗架構,因此,提高轉換效率分析上的準確性。另外,為了探討矽酸鹽(Silicate)螢光粉於白光LED封裝之光學特性,我們建立矽酸鹽螢光粉的光學模型,再將模型中得到之轉換效率與實驗量測結果做比較。
As well known, in addition to the ways of packaging, the conversion efficiency of the various applied phosphors also has greatly effect on the luminous efficiency in the phosphor-based white light LEDs. In such a way, it has become a very important issue that how to evaluate the quantum efficiency of phosphors. In this thesis, we has proposed an improved measuring setup for obtain the precise quantum efficiency of phosphors. The accuracy of the measurement has much enhanced in analysis. Besides, we also study the optical model to precisely describe the spatial and the chromatic distribution of the lights emitted from blue LEDs covered with silicate phosphors.
1. H. J. Round, “A note on carborundum,” Electrical World 49, 309-310 (1907).
2. N. Holonyak, Jr., and S. F. Bevaqua, “Coherent(visible) Light Emission From Ga(As1–xPx) Junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
3. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Spinger, Berlin, 1997).
4. Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925, Dec.7 (1999).
5. S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
6. E. F. Schubert, Light-Emitting Diodes, 2nd ed. (Cambridge University Press, Cambridge, 2006).
7. 孫慶成,LED的效率極限與照明光學設計的極致,2009 LED固態照明研討會,中華民國九十八年。
8. 葉耀宗、董建岳、劉偉仁,張學明、陳政民, “白光LED與螢光粉特性探討(上),” 工業材料雜誌 257, 129-138 (2008).
9. A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “ Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
10. Stelur et al., “Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices,” United States Patent, US 6685852 B2 (2004).
11. T.F. McNulty et al., “UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating The Same,” United States Patent, US 6686676 B2 (2004).
12. R. J. Xiea, N. Hirosak, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101 (2007).
13. Wikipedia, http://zh.wikipedia.org.
14. 王書任、林仁鈞, “讓LED發光的功臣-螢光粉,” 科學發展 435, 22-26 (2009)。
15. 劉如熹,白光發光二極體用螢光粉最新發展,LED固態照明研討會論文集 (2008)。
16. 劉如熹、王健源,白光發光二極體製作技術,全華科技圖書公司,中華民國九十四年。
17. R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power Phosphor-converted Light-Emitting Diodes Based on III- Nitrides,” IEEE J. Sel. Topics Quantum Electron. 8, 339-345 (2002).
18. T. Mesli, “Improvement of Ultra High Brightness White LEDs,” Proc. SPIE 6797, 67970N (2007).
19. P. Vitta, P. Pobedinskas, and A. Zukauskas, “Phosphor Thermometry in WhiteLight-Emitting Diodes,” IEEE Photon. Technol. Lett. 19, 399-401 (2007).
20. N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined-atom-based nanophosphors for solid state lighting,” Proc. SPIE 5187, 133-141 (2004).
21. Optoelectronics Industry Development Association (OIDA), Light emitting diodes (LEDs) for general illumination: An OIDA technology roadmap update 2002 (Optoelectronics Industry Development Assn., Washington DC, 2002).
22. Labsphere, Inc., http://www.labsphere.com/tecdocs.aspx.
23. N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241, 89-96 (1995).
24. Hyperphysics , http://hyperphysics.phy-astr.gsu.edu/Hbase/atmos/blusky.html.
25. Y. Zhu, N. Narendran, and Y. Gu, “Investigation of the Optical Properties of YAG:Ce Phosphor,” Proc. SPIE 6337, 63370S (2006).
26. N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Stat. Sol. (a) 202, 60-62 (2005).
27. S. C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” Appl. Phys. Lett. 92, 143309 (2008).
28. P. Schlotter, J. Baur, Ch. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, and J. Schneider, “Fabrication and characterization of GaN:InGaN:AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs,” Materials Science and Engineering B 59, 390-394 (1999).
29. R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination-grade white pcLEDs,” Proc. SPIE 5187, 115-122 (2004).
30. Breault Research Organization, http://www.breault.com/.
31. S. J. Lee, “Analysis of light-emitting diodes bh Monte-Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
32. Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett. 34, 1-3 (2009).
33. D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
34. J. P. Chevaillier, J. Fabre, and P. Hamelin, “Forward scattered light intensities by a sphere located anywhere in a Gaussian beam,” Appl. Opt. 25,1222-1225 (1986).
35. C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Exp. 16, 20060-20066 (2008).
36. 何信穎,白光LED之YAG螢光粉光學模型之研究,國立中央大學光電所碩士論文,中華民國九十六年。
37. 陳靜儀,矽酸鹽螢光粉用於白光LED之光學模型,國立中央大學光電所碩士論文,中華民國九十七年。
38. C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I-Min Chan, and J. T. Wang, “Monte Carlo Simulation of Optical Properties of Phosphor-Screened Ultraviolet Light in a White Light-Emitting Device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).
39. M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27, 250-263 (1979).
40. Q. Fu and W. Sun, “Mie Theory for Light Scattering by a Spherical Particle in an Absorbing Medium,” Appl. Opt. 40, 1354-1361 (2001).
41. I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. A 18, 1275-1278 (2001).
42. Á. Borbély and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
43. D. L. MacAdam, Spectrophotometry in Color Measurement, (Springer-Verlag, New York, 1981).
44. C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).